بدائل البحث:
optimisation algorithm » optimization algorithms (توسيع البحث), maximization algorithm (توسيع البحث), identification algorithm (توسيع البحث)
process optimisation » process optimization (توسيع البحث), robust optimisation (توسيع البحث), process simulation (توسيع البحث)
all optimization » art optimization (توسيع البحث), ai optimization (توسيع البحث), whale optimization (توسيع البحث)
based process » based processes (توسيع البحث), based probes (توسيع البحث), based proteins (توسيع البحث)
lines based » lens based (توسيع البحث), genes based (توسيع البحث), lines used (توسيع البحث)
image all » images all (توسيع البحث), image a (توسيع البحث)
optimisation algorithm » optimization algorithms (توسيع البحث), maximization algorithm (توسيع البحث), identification algorithm (توسيع البحث)
process optimisation » process optimization (توسيع البحث), robust optimisation (توسيع البحث), process simulation (توسيع البحث)
all optimization » art optimization (توسيع البحث), ai optimization (توسيع البحث), whale optimization (توسيع البحث)
based process » based processes (توسيع البحث), based probes (توسيع البحث), based proteins (توسيع البحث)
lines based » lens based (توسيع البحث), genes based (توسيع البحث), lines used (توسيع البحث)
image all » images all (توسيع البحث), image a (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
A new fast filtering algorithm for a 3D point cloud based on RGB-D information
منشور في 2019"…Then, the optimal segmentation threshold of the V image that is calculated by using the Otsu algorithm is applied to segment the color mapping image into a binary image, which is used to extract the valid point cloud from the original point cloud with outliers. …"
-
7
-
8
Image processing workflow.
منشور في 2020"…<p>Raw fluorescent microscope images (a) were processed with a binary segmentation algorithm, and clusters of bacterial cells were manually annotated. …"
-
9
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
منشور في 2024"…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …"
-
10
Hybrid Computational Framework for Fault Detection in Coil Winding Manufacturing Process Using Knowledge Distillation
منشور في 2023"…</p> <p><br></p> <p>The conventional End of the Line (EoL) tests are insufficient in detecting faults during process resulting in increased manufacturing costs and lead times. …"
-
11
PathOlOgics_RBCs Python Scripts.zip
منشور في 2023"…No segmented cell(s) occupied a space larger than 80x80 pixels, including the three-overlapping RBCs. As a result, the algorithm centred/padded each cell(s) within an 80x80 pixel-sized image, generating mask, cropped, and segmented images, all following a standardized naming convention that begins with the slide/smear number, followed by the patch number, and concludes with the (XYWH) coordinates. …"
-
12
Flowchart scheme of the ML-based model.
منشور في 2024"…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …"
-
13
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
منشور في 2020"…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …"
-
14
Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx
منشور في 2025"…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …"
-
15
Flow diagram of the automatic animal detection and background reconstruction.
منشور في 2020"…If the identical blob that was detected in panel J (bottom) is found in any of the new subtracted binary images (cyan arrow), the animal is considered as having left its original position, and the algorithm continues. …"
-
16
Supplementary Data: Biodiversity and Energy System Planning - Queensland 2025
منشور في 2025"…</li></ul><h3>Analysis Scripts</h3><p dir="ltr">Complete set of R scripts for reproducing all analyses:</p><ul><li><b>percent cost increase_line plot.R</b>: Creates visualizations of energy cost impacts under different conservation scenarios</li><li><b>Zonation curves.R</b>: Generates conservation performance curves and coverage statistics</li><li><b>NPV_bar_plot.R</b>: Produces economic analysis plots with Net Present Value breakdowns</li><li><b>domestic_export_map_iterations.R</b>: Creates spatial maps of renewable energy infrastructure for domestic and export scenarios</li></ul><h2>Technical Specifications</h2><h3>Data Formats</h3><ul><li><b>Spatial Data</b>: ESRI Geodatabase (.gdb), Shapefile (.shp), GeoTIFF (.tif)</li><li><b>Tabular Data</b>: CSV, Microsoft Excel (.xlsx, .xls)</li><li><b>Analysis Code</b>: R scripts (.R)</li></ul><h3>Software Requirements</h3><ul><li><b>R</b> (≥4.0.0) with packages: sf, dplyr, ggplot2, readr, readxl, tidyr, furrr, ozmaps, ggpattern</li><li><b>ESRI ArcGIS</b> or <b>QGIS</b> for geodatabase access and spatial analysis</li><li><b>Zonation</b> conservation planning software (for methodology understanding)</li></ul><h3>Hardware Recommendations</h3><ul><li><b>RAM</b>: 16GB minimum (32GB recommended for full spatial analysis)</li><li><b>Storage</b>: 15GB free space for data extraction and processing</li><li><b>CPU</b>: Multi-core processor recommended for parallel processing scripts</li></ul><h2>Detailed Description of the VRE Siting and Cost-Minimization Model</h2><p><br></p><p dir="ltr">This section provides an in-depth description of the Variable Renewable Energy (VRE) siting model, including the software, the core algorithm, and the optimisation process used to determine the least-cost, spatially constrained development trajectory for VRE infrastructure in Queensland, Australia.…"