يعرض 141 - 160 نتائج من 166 نتيجة بحث عن '(( lines based process optimization algorithm ) OR ( binary based robust optimization algorithm ))', وقت الاستعلام: 0.45s تنقيح النتائج
  1. 141

    Performance of pairing prediction versus training set size and number of pairs per species. حسب Guillaume Marmier (7495823)

    منشور في 2019
    "…<p><b>A</b>: Fraction of pairs correctly identified (TP fraction) versus training set size, for DCA-, MI-, and Mirrortree-based methods. The three pairing scores corresponding to each of these three methods are employed in two ways: either within each species we find the chain B with optimal pairing score with each chain A (dashed lines), or within each species we employ the Hungarian matching algorithm to find the one-to-one pairing of chains A and B that optimizes the sum of the pairing scores (solid lines). …"
  2. 142
  3. 143
  4. 144

    Methodology block diagram. حسب Gahao Chen (21688843)

    منشور في 2025
    "…Six machine learning algorithms - Random Forest (RF), AdaBoost, Light Gradient Boosting Machine (LightGBM), eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Tabular Prior-data Fitted Network version 2.0 (TabPFN-V2) - were implemented with five-fold cross-validation to optimize model hyperparameters. …"
  5. 145
  6. 146

    Video_1_Cabbage and Weed Identification Based on Machine Learning and Target Spraying System Design.MP4 حسب Xueguan Zhao (13197201)

    منشور في 2022
    "…According to the results of the support vector machine classification test, the feature vector comprised of the point-to-line ratio, maximum inscribed circle radius, and fitted curve coefficient had the highest identification accuracy of 95.7%, with a processing time of 33 ms for a single-frame image. …"
  7. 147
  8. 148

    Data Sheet 1_Detection of litchi fruit maturity states based on unmanned aerial vehicle remote sensing and improved YOLOv8 model.docx حسب Changjiang Liang (21099887)

    منشور في 2025
    "…In addition, YOLOv8-FPDW was more competitive than mainstream object detection algorithms. The study predicted the optimal harvest period for litchis, providing scientific support for orchard batch harvesting and fine management.…"
  9. 149

    Sample image for illustration. حسب Indhumathi S. (19173013)

    منشور في 2024
    "…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
  10. 150

    Comparison analysis of computation time. حسب Indhumathi S. (19173013)

    منشور في 2024
    "…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
  11. 151

    Process flow diagram of CBFD. حسب Indhumathi S. (19173013)

    منشور في 2024
    "…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
  12. 152

    Precision recall curve. حسب Indhumathi S. (19173013)

    منشور في 2024
    "…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
  13. 153

    Quadratic polynomial in 2D image plane. حسب Indhumathi S. (19173013)

    منشور في 2024
    "…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
  14. 154

    Models and Dataset حسب M RN (9866504)

    منشور في 2025
    "…</p><p dir="ltr"><br></p><p dir="ltr"><b>RAO (Rao Optimization Algorithm):</b><br>RAO is a parameter-less optimization algorithm that updates solutions based on simple arithmetic operations involving the best and worst individuals in the population. …"
  15. 155

    Processed dataset to train and test the WGAN-GP_IMOA_DA_Ensemble model حسب Ramya Chinnasamy (21633527)

    منشور في 2025
    "…This framework integrates a novel biologically inspired optimization algorithm, the Indian Millipede Optimization Algorithm (IMOA), for effective feature selection. …"
  16. 156

    DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx حسب Massaine Bandeira e Sousa (7866242)

    منشور في 2024
    "…Overall, the models exhibited a robust fit for all cooking times, showcasing the significant potential of NIRs as a high-throughput phenotyping tool for classifying cassava genotypes based on cooking time.…"
  17. 157

    Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx حسب Massaine Bandeira e Sousa (7866242)

    منشور في 2024
    "…Overall, the models exhibited a robust fit for all cooking times, showcasing the significant potential of NIRs as a high-throughput phenotyping tool for classifying cassava genotypes based on cooking time.…"
  18. 158

    Supplementary Material 8 حسب Nishitha R Kumar (19750617)

    منشور في 2025
    "…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"
  19. 159

    Untitled Item حسب Caio Vieira Arasaki (15508650)

    منشور في 2023
    "…PLA design can be formulated as an interactive optimization problem with many conflicting factors. Incorporating Decision Makers' (DM) preferences during the search process may help the algorithms to find more adequate solutions for their profiles. …"
  20. 160

    <b>Road intersections Data with branch information extracted from OSM</b> & <b>C</b><b>odes to implement the extraction </b>&<b> I</b><b>nstructions on how to </b><b>reproduce each... حسب Zihao Tang (19794537)

    منشور في 2025
    "…Each script plays a specific role in the overall process:</p><ul><li><b>bufferThin.py</b>: Implements a thinning algorithm to generate a skeleton of buffered road geometry.…"