يعرض 81 - 100 نتائج من 100 نتيجة بحث عن '(( lines based robust optimization algorithm ) OR ( binary basic whale optimization algorithm ))', وقت الاستعلام: 0.31s تنقيح النتائج
  1. 81

    DataSheet_1_Computational identification and clinical validation of a novel risk signature based on coagulation-related lncRNAs for predicting prognosis, immunotherapy response, an... حسب Fang Zhang (197215)

    منشور في 2023
    "…The cluster and CRLncSig were confirmed as the independent risk factors, and a CRLncSig-based nomogram exhibited a robust prognostic performance. …"
  2. 82

    Structural diagram of PPCS. حسب Yicheng Liu (2179626)

    منشور في 2025
    "…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …"
  3. 83

    Comparison between NSGA-II and RPGA. حسب Yicheng Liu (2179626)

    منشور في 2025
    "…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …"
  4. 84

    Parameter value. حسب Yicheng Liu (2179626)

    منشور في 2025
    "…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …"
  5. 85

    Summary of BBSDP-related studies. حسب Yicheng Liu (2179626)

    منشور في 2025
    "…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …"
  6. 86

    Symbol description. حسب Yicheng Liu (2179626)

    منشور في 2025
    "…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …"
  7. 87

    Nominal model solution results. حسب Yicheng Liu (2179626)

    منشور في 2025
    "…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …"
  8. 88

    Mode choice under rail transit disruption. حسب Yicheng Liu (2179626)

    منشور في 2025
    "…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …"
  9. 89

    Geometric refinement of laser-derived building roof contours and ridges using aerial image حسب Vanessa Jordão Marcato (10481029)

    منشور في 2021
    "…The energy function associated with MRF is minimized by the genetic algorithm optimization method, resulting in the grouping of straight lines for each roof object. …"
  10. 90

    Image 4_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg حسب Minhao Huang (4952764)

    منشور في 2025
    "…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
  11. 91

    Table 2_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx حسب Minhao Huang (4952764)

    منشور في 2025
    "…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
  12. 92

    Table 1_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx حسب Minhao Huang (4952764)

    منشور في 2025
    "…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
  13. 93

    Image 3_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg حسب Minhao Huang (4952764)

    منشور في 2025
    "…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
  14. 94

    Image 2_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg حسب Minhao Huang (4952764)

    منشور في 2025
    "…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
  15. 95

    Table 3_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx حسب Minhao Huang (4952764)

    منشور في 2025
    "…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
  16. 96

    Image 1_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg حسب Minhao Huang (4952764)

    منشور في 2025
    "…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …"
  17. 97

    DataSheet_1_Necroptosis-related lncRNAs: Combination of bulk and single-cell sequencing reveals immune landscape alteration and a novel prognosis stratification approach in lung ad... حسب Yizhu Yao (12357010)

    منشور في 2022
    "…In the current study, a robust and novel prognostic stratification model based on Necroptosis-related LncRNA Risk Scoring (NecroLRS) and clinicopathological parameters was constructed and systemically validated in both internal and external validation cohorts. …"
  18. 98

    DataSheet_1_Necroptosis-related lncRNAs: Combination of bulk and single-cell sequencing reveals immune landscape alteration and a novel prognosis stratification approach in lung ad... حسب Yizhu Yao (12357010)

    منشور في 2022
    "…In the current study, a robust and novel prognostic stratification model based on Necroptosis-related LncRNA Risk Scoring (NecroLRS) and clinicopathological parameters was constructed and systemically validated in both internal and external validation cohorts. …"
  19. 99

    Table 1_Plasma exosomal lncRNA-related signatures define molecular subtypes and predict survival and treatment response in hepatocellular carcinoma.docx حسب Fangmin Zhong (17415318)

    منشور في 2025
    "…Prognostic models were developed and optimized via 10 machine learning algorithms with 10-fold cross-validation. …"
  20. 100

    Figures and Tables حسب Divya C D (22799186)

    منشور في 2025
    "…Robots Comput. Vision XXXI: Algorithms and Techniques, Burlingame, CA, USA, Jan. 23–24, 2012.…"