Search alternatives:
robust optimization » process optimization (Expand Search), robust estimation (Expand Search), joint optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
based robust » based probes (Expand Search)
binary basic » binary mask (Expand Search)
lines based » lens based (Expand Search), genes based (Expand Search), lines used (Expand Search)
robust optimization » process optimization (Expand Search), robust estimation (Expand Search), joint optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
based robust » based probes (Expand Search)
binary basic » binary mask (Expand Search)
lines based » lens based (Expand Search), genes based (Expand Search), lines used (Expand Search)
-
81
DataSheet_1_Computational identification and clinical validation of a novel risk signature based on coagulation-related lncRNAs for predicting prognosis, immunotherapy response, an...
Published 2023“…The cluster and CRLncSig were confirmed as the independent risk factors, and a CRLncSig-based nomogram exhibited a robust prognostic performance. …”
-
82
Structural diagram of PPCS.
Published 2025“…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
-
83
Comparison between NSGA-II and RPGA.
Published 2025“…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
-
84
Parameter value.
Published 2025“…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
-
85
Summary of BBSDP-related studies.
Published 2025“…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
-
86
Symbol description.
Published 2025“…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
-
87
Nominal model solution results.
Published 2025“…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
-
88
Mode choice under rail transit disruption.
Published 2025“…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
-
89
Geometric refinement of laser-derived building roof contours and ridges using aerial image
Published 2021“…The energy function associated with MRF is minimized by the genetic algorithm optimization method, resulting in the grouping of straight lines for each roof object. …”
-
90
Image 4_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
Published 2025“…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
-
91
Table 2_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx
Published 2025“…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
-
92
Table 1_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx
Published 2025“…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
-
93
Image 3_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
Published 2025“…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
-
94
Image 2_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
Published 2025“…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
-
95
Table 3_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx
Published 2025“…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
-
96
Image 1_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
Published 2025“…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
-
97
DataSheet_1_Necroptosis-related lncRNAs: Combination of bulk and single-cell sequencing reveals immune landscape alteration and a novel prognosis stratification approach in lung ad...
Published 2022“…In the current study, a robust and novel prognostic stratification model based on Necroptosis-related LncRNA Risk Scoring (NecroLRS) and clinicopathological parameters was constructed and systemically validated in both internal and external validation cohorts. …”
-
98
DataSheet_1_Necroptosis-related lncRNAs: Combination of bulk and single-cell sequencing reveals immune landscape alteration and a novel prognosis stratification approach in lung ad...
Published 2022“…In the current study, a robust and novel prognostic stratification model based on Necroptosis-related LncRNA Risk Scoring (NecroLRS) and clinicopathological parameters was constructed and systemically validated in both internal and external validation cohorts. …”
-
99
Table 1_Plasma exosomal lncRNA-related signatures define molecular subtypes and predict survival and treatment response in hepatocellular carcinoma.docx
Published 2025“…Prognostic models were developed and optimized via 10 machine learning algorithms with 10-fold cross-validation. …”
-
100
Figures and Tables
Published 2025“…Robots Comput. Vision XXXI: Algorithms and Techniques, Burlingame, CA, USA, Jan. 23–24, 2012.…”