Search alternatives:
codon optimization » wolf optimization (Expand Search)
binary basic » binary mask (Expand Search)
lines based » lens based (Expand Search), genes based (Expand Search), lines used (Expand Search)
based swarm » based sars (Expand Search), based smart (Expand Search), based arm (Expand Search)
basic codon » basic column (Expand Search)
codon optimization » wolf optimization (Expand Search)
binary basic » binary mask (Expand Search)
lines based » lens based (Expand Search), genes based (Expand Search), lines used (Expand Search)
based swarm » based sars (Expand Search), based smart (Expand Search), based arm (Expand Search)
basic codon » basic column (Expand Search)
-
61
May 1st −7st Metro Line 2 OD Statistics Table.
Published 2025“…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
-
62
DataSheet1_Equivalent of distribution network with distributed photovoltaics for electromechanical transient study based on user-defined modeling.ZIP
Published 2023“…Finally, the particle swarm optimization (PSO) algorithm is used to obtain the parameters of the equivalent PV. …”
-
63
DataSheet1_Equivalent of distribution network with distributed photovoltaics for electromechanical transient study based on user-defined modeling.ZIP
Published 2023“…Finally, the particle swarm optimization (PSO) algorithm is used to obtain the parameters of the equivalent PV. …”
-
64
Structural diagram of PPCS.
Published 2025“…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
-
65
Comparison between NSGA-II and RPGA.
Published 2025“…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
-
66
Parameter value.
Published 2025“…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
-
67
Summary of BBSDP-related studies.
Published 2025“…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
-
68
Symbol description.
Published 2025“…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
-
69
Nominal model solution results.
Published 2025“…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
-
70
Mode choice under rail transit disruption.
Published 2025“…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”