Showing 61 - 70 results of 70 for search '(( lines based swarm optimization algorithm ) OR ( binary basic codon optimization algorithm ))*', query time: 0.92s Refine Results
  1. 61

    May 1st −7st Metro Line 2 OD Statistics Table. by Yicheng Liu (2179626)

    Published 2025
    “…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
  2. 62

    DataSheet1_Equivalent of distribution network with distributed photovoltaics for electromechanical transient study based on user-defined modeling.ZIP by Zhe Jiang (6903)

    Published 2023
    “…Finally, the particle swarm optimization (PSO) algorithm is used to obtain the parameters of the equivalent PV. …”
  3. 63

    DataSheet1_Equivalent of distribution network with distributed photovoltaics for electromechanical transient study based on user-defined modeling.ZIP by Zhe Jiang (6903)

    Published 2023
    “…Finally, the particle swarm optimization (PSO) algorithm is used to obtain the parameters of the equivalent PV. …”
  4. 64

    Structural diagram of PPCS. by Yicheng Liu (2179626)

    Published 2025
    “…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
  5. 65

    Comparison between NSGA-II and RPGA. by Yicheng Liu (2179626)

    Published 2025
    “…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
  6. 66

    Parameter value. by Yicheng Liu (2179626)

    Published 2025
    “…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
  7. 67

    Summary of BBSDP-related studies. by Yicheng Liu (2179626)

    Published 2025
    “…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
  8. 68

    Symbol description. by Yicheng Liu (2179626)

    Published 2025
    “…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
  9. 69

    Nominal model solution results. by Yicheng Liu (2179626)

    Published 2025
    “…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”
  10. 70

    Mode choice under rail transit disruption. by Yicheng Liu (2179626)

    Published 2025
    “…A case study of a bidirectional disruption during the 08:00–10:00 on the section of Xi’an Metro Line 2 demonstrates that: (1) The proposed model exhibits stronger robustness under demand uncertainty, achieving a reduction of 3 dispatched vehicles and a cost saving of 9,439 RMB by moderately increasing passenger costs by 850 RMB and extending bridging time; (2) The RPGA algorithm outperforms Non-dominated Sorting Genetic Algorithm II (NSGA-II), Reinforcement Learning-based NSGA-II (RLNSGA-II), and Multi-objective Particle Swarm Optimization Algorithm (MOPSO) in hypervolume (HV), generational distance (GD), and non-dominated ratio (NDR); (3) Increasing the rated passenger capacity within a certain range can reduce average passenger delays but correspondingly raises transportation costs. …”