Search alternatives:
robust optimization » process optimization (Expand Search), robust estimation (Expand Search), joint optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
lines based » lens based (Expand Search), genes based (Expand Search), lines used (Expand Search)
based wolf » based whole (Expand Search), based work (Expand Search), based well (Expand Search)
robust optimization » process optimization (Expand Search), robust estimation (Expand Search), joint optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
lines based » lens based (Expand Search), genes based (Expand Search), lines used (Expand Search)
based wolf » based whole (Expand Search), based work (Expand Search), based well (Expand Search)
-
1
-
2
-
3
-
4
-
5
Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization
Published 2025“…By integrating Latent Encoder Coupled Generative Adversarial Network (LEGAN) optimized with Binary Emperor Penguin optimizer (BEPO), the scheme enhances routing efficiency and security. …”
-
6
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
7
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
8
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
9
QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm
Published 2020“…Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. …”
-
10
Performance on GradEva.
Published 2024“…The sequences generated by our algorithm identify points that satisfy the first-order necessary condition for Pareto optimality. …”
-
11
The considered test problems.
Published 2024“…The sequences generated by our algorithm identify points that satisfy the first-order necessary condition for Pareto optimality. …”
-
12
Performance on FunEva.
Published 2024“…The sequences generated by our algorithm identify points that satisfy the first-order necessary condition for Pareto optimality. …”
-
13
Performance on Iter.
Published 2024“…The sequences generated by our algorithm identify points that satisfy the first-order necessary condition for Pareto optimality. …”
-
14
Continuation of Table 2.
Published 2024“…The sequences generated by our algorithm identify points that satisfy the first-order necessary condition for Pareto optimality. …”
-
15
-
16
-
17
Predicting Thermal Decomposition Temperature of Binary Imidazolium Ionic Liquid Mixtures from Molecular Structures
Published 2021“…The subset of optimal descriptors was screened by combining the genetic algorithm with the multiple linear regression method. …”
-
18
-
19
Pseudo Code of RBMO.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
20
P-value on CEC-2017(Dim = 30).
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”