Search alternatives:
feature optimization » resource optimization (Expand Search), feature elimination (Expand Search), structure optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
mixed feature » suited feature (Expand Search), based feature (Expand Search)
lines mixed » linear mixed (Expand Search), linear fixed (Expand Search)
feature optimization » resource optimization (Expand Search), feature elimination (Expand Search), structure optimization (Expand Search)
codon optimization » wolf optimization (Expand Search)
mixed feature » suited feature (Expand Search), based feature (Expand Search)
lines mixed » linear mixed (Expand Search), linear fixed (Expand Search)
-
1
Schematic diagram of chromosome crossover.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
2
Vehicle-only delivery routes.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
3
Delivery route diagram of Stage 4.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
4
Manhattan delivery route.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
5
Final delivery routes of vehicle-assisted UAVs.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
6
Customer point clustering results.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
7
Schematic diagram of chromosome mutation.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
8
Flight path in three-dimensional space.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
9
IKM Pseudo – code.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
10
Locations of open areas and no-fly zones.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
11
Division map of the delivery area.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
12
Schematic diagram of cluster centers in Phase 1.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
13
UAV-only delivery routes.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
14
Shapiro-Wilk test results.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
15
t-Test analysis results.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
16
Schematic diagram of no-fly zones.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
17
Delivery plans for different vehicles.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
18
Schematic diagram of obstacle-avoiding paths.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
19
UAV delivery routes in Phase 2.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”
-
20
Basic information of customer points.
Published 2025“…Against this backdrop, the vehicle-assisted UAV collaborative delivery model has emerged: through the division of labor and collaboration between ground vehicles and UAVs, it not only expands the service radius of UAVs but also overcomes the constraints of no-fly zones, achieving dual improvements in delivery efficiency and service quality.This study focuses on the optimization of vehicle-assisted UAV delivery paths under no-fly zone constraints, aiming to construct a multi-objective optimization model that balances delivery costs, carbon emissions, and customer satisfaction, and to design an efficient solution algorithm for providing scientific decision support to logistics enterprises. …”