Search alternatives:
market decrease » marked decrease (Expand Search), largest decrease (Expand Search), marked increase (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a market » _ market (Expand Search), a marker (Expand Search)
load a » load _ (Expand Search), load b (Expand Search)
market decrease » marked decrease (Expand Search), largest decrease (Expand Search), marked increase (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a market » _ market (Expand Search), a marker (Expand Search)
load a » load _ (Expand Search), load b (Expand Search)
-
1
-
2
DataSheet1_Decreasing viscosity and increasing accessible load by replacing classical diluents with a hydrotrope in liquid–liquid extraction.docx
Published 2025“…We show that using hydrotropes as a diluent decreases the viscosity of solutions by more than a factor of ten, even under high load by extracted cations. …”
-
3
-
4
A sample choice question with a warning label.
Published 2024“…The rapid increase in SSB consumption in China necessitates robust regulations. This study employed a choice experiment to simulate the market scenario in which a text warning label was presented on SSBs. …”
-
5
A sample choice question without a warning label.
Published 2024“…The rapid increase in SSB consumption in China necessitates robust regulations. This study employed a choice experiment to simulate the market scenario in which a text warning label was presented on SSBs. …”
-
6
-
7
The motor torque curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.
Published 2025“…<p>The motor torque curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.…”
-
8
The motor speed curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.
Published 2025“…<p>The motor speed curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.…”
-
9
Graded loading creep stress loading level.
Published 2025“…<div><p>Open rock masses are subject to prolonged loading and freeze-thaw cycles in cold regions. In this study, we take saturated fissured red sandstone as object to investigate the long-term mechanical response characteristics of fractured rock under freeze-thaw conditions. …”
-
10
Magnification X2 of Fig 4A.
Published 2024“…<i>intracellularis</i> infection. In this study, we investigated the nuclear factor-<b>κ</b>B (NF-κB)-regulated immune response against infection of a clinical strain Dkp23 and a live-attenuated Enterisol vaccine strain in PK-15 cells. …”
-
11
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
12
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
13
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
14
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
15
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
16
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
17
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
18
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
19
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
20
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”