يعرض 141 - 160 نتائج من 11,395 نتيجة بحث عن '(( models using algorithm ) OR ((( element finding algorithm ) OR ( level coding algorithm ))))', وقت الاستعلام: 0.54s تنقيح النتائج
  1. 141
  2. 142
  3. 143
  4. 144
  5. 145
  6. 146

    Algorithm of ensemble machine learning models used in: a) Bagging model (Random Forest), b) Boosting model (XGBoost), and c) Stacking model (MLP, SVR). حسب Masoud Ghodsian (22298480)

    منشور في 2025
    "…<p>Algorithm of ensemble machine learning models used in: a) Bagging model (Random Forest), b) Boosting model (XGBoost), and c) Stacking model (MLP, SVR).…"
  7. 147
  8. 148
  9. 149

    The flow chart of the PPO algorithm. حسب Qichao Wang (5132438)

    منشور في 2025
    "…Training the controller model between grinding force difference and end-effector compensation displacement using the proximal policy optimization algorithm. …"
  10. 150

    Determination of cyclic behavior of various cross-section composite column-beam connections reinforced with FRP composite using FEM analysis and ML models حسب Yasemin Simsek Turker (22340676)

    منشور في 2025
    "…Mean learning (XGBoost and the random forest algorithm) and numerical methods were used to identify the data collected experimentally due to the rotation behavior. …"
  11. 151
  12. 152

    Algorithms included in Neuroptimus. حسب Máté Mohácsi (20469514)

    منشور في 2024
    الموضوعات:
  13. 153
  14. 154
  15. 155
  16. 156
  17. 157

    Algorithm comparison. حسب Ning Ji (325849)

    منشور في 2024
    الموضوعات:
  18. 158

    Optimization process of BO algorithm. حسب Hoa Thi Trinh (20347834)

    منشور في 2024
    "…Bayesian optimization (BO) algorithms, including BO—Gaussian Process, BO—Random Forest, and Random Search methods, were used to refine the XGBoost model architecture. …"
  19. 159
  20. 160

    Model comparison between our model-free algorithm (here MF*) and SARSA. حسب Carlos A. Velázquez-Vargas (19751567)

    منشور في 2024
    "…<p>SARSA provides a temporal difference update to state-action values for every start-target pair: Q(s,a)←Q(s,a)+α[r+γQ(s′,a′)−Q(s,a)]. We evaluated the models in the data of Experiment 1 and Experiment 2 using AIC and BIC differences and testing if they were different from zero using the Wilcoxon signed-rank test. …"