بدائل البحث:
modeling algorithm » making algorithm (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), finding algorithm (توسيع البحث), routing algorithm (توسيع البحث)
fluent modeling » element modeling (توسيع البحث), forest modeling (توسيع البحث), plant modeling (توسيع البحث)
cnn algorithm » mean algorithm (توسيع البحث), _ algorithm (توسيع البحث), ii algorithm (توسيع البحث)
present cnn » present n (توسيع البحث), present cryo (توسيع البحث)
modeling algorithm » making algorithm (توسيع البحث)
coding algorithm » cosine algorithm (توسيع البحث), finding algorithm (توسيع البحث), routing algorithm (توسيع البحث)
fluent modeling » element modeling (توسيع البحث), forest modeling (توسيع البحث), plant modeling (توسيع البحث)
cnn algorithm » mean algorithm (توسيع البحث), _ algorithm (توسيع البحث), ii algorithm (توسيع البحث)
present cnn » present n (توسيع البحث), present cryo (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
CNN-LSTM parameters.
منشور في 2025"…Additionally, the IDS employs a hybrid deep learning classifier that integrates Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks to capture the smart grid data’s spatial and temporal features. …"
-
7
-
8
-
9
Hyberparameters of CNN architectures.
منشور في 2024"…<div><p>The early identification of pests and diseases in crops now presents a significant challenge. Different methods have been used to resolve this problem. …"
-
10
-
11
-
12
-
13
-
14
Codes for "<b>A coherent power-load optimization algorithm for wind-farm-level yaw control considering wake effects via deep neural network</b>"
منشور في 2024"…<p dir="ltr">Codes for "<b>A coherent power-load optimization algorithm for wind-farm-level yaw control considering wake effects via deep neural network</b>"</p>…"
-
15
Performance metrics of the CNN-LSTM model.
منشور في 2025"…The proposed Smart Load Adaptive Distribution with Reinforcement and Optimization approach, <i>SLADRO</i>, combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) algorithms for load prediction, a hybrid bio-inspired optimization technique—Orthogonal Arrays and Particle Swarm Optimization (OOA-PSO)—for feature selection algorithms, and Deep Reinforcement Learning (DRL) for dynamic task scheduling. …"
-
16
Comparison of CNN-LSTM with baseline models.
منشور في 2025"…The proposed Smart Load Adaptive Distribution with Reinforcement and Optimization approach, <i>SLADRO</i>, combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) algorithms for load prediction, a hybrid bio-inspired optimization technique—Orthogonal Arrays and Particle Swarm Optimization (OOA-PSO)—for feature selection algorithms, and Deep Reinforcement Learning (DRL) for dynamic task scheduling. …"
-
17
Training duration for CNN-LSTM and DQN.
منشور في 2025"…The proposed Smart Load Adaptive Distribution with Reinforcement and Optimization approach, <i>SLADRO</i>, combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) algorithms for load prediction, a hybrid bio-inspired optimization technique—Orthogonal Arrays and Particle Swarm Optimization (OOA-PSO)—for feature selection algorithms, and Deep Reinforcement Learning (DRL) for dynamic task scheduling. …"
-
18
Hyperparameter tuning for CNN-LSTM model.
منشور في 2025"…The proposed Smart Load Adaptive Distribution with Reinforcement and Optimization approach, <i>SLADRO</i>, combines Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) algorithms for load prediction, a hybrid bio-inspired optimization technique—Orthogonal Arrays and Particle Swarm Optimization (OOA-PSO)—for feature selection algorithms, and Deep Reinforcement Learning (DRL) for dynamic task scheduling. …"
-
19
-
20