بدائل البحث:
based optimization » whale optimization (توسيع البحث)
primary aim » primary care (توسيع البحث), primary data (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data based » data used (توسيع البحث)
aim based » ai based (توسيع البحث), bim based (توسيع البحث), aom based (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
primary aim » primary care (توسيع البحث), primary data (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data based » data used (توسيع البحث)
aim based » ai based (توسيع البحث), bim based (توسيع البحث), aom based (توسيع البحث)
-
121
Supplementary file 1_Development of a venous thromboembolism risk prediction model for patients with primary membranous nephropathy based on machine learning.docx
منشور في 2025"…Finally, an online predictive tool based on the optimal model was developed to provide real-time individualized VTE risk predictions for PMN patients.…"
-
122
-
123
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
-
124
-
125
-
126
-
127
-
128
-
129
Datasets used for the study and their sources.
منشور في 2023"…<div><p>Introduction</p><p>Ghana is the first country in sub-Saharan Africa (SSA) to aim for universal health coverage (UHC). Based on Ghana’s UHC system, the accessibility and distribution of healthcare facilities were evaluated for 2020. …"
-
130
ACSA flowchart.
منشور في 2024"…This algorithm possesses the capability to adapt its search behavior in response to the changing dynamics of the optimization process. …"
-
131
ACSA pseudo code for proposed control process.
منشور في 2024"…This algorithm possesses the capability to adapt its search behavior in response to the changing dynamics of the optimization process. …"
-
132
Original waveform of fault 14.
منشور في 2024"…This algorithm possesses the capability to adapt its search behavior in response to the changing dynamics of the optimization process. …"
-
133
Original waveform of fault 15.
منشور في 2024"…This algorithm possesses the capability to adapt its search behavior in response to the changing dynamics of the optimization process. …"
-
134
ACSA convergence profile.
منشور في 2024"…This algorithm possesses the capability to adapt its search behavior in response to the changing dynamics of the optimization process. …"
-
135
ACSA plots for FAR vs FDR.
منشور في 2024"…This algorithm possesses the capability to adapt its search behavior in response to the changing dynamics of the optimization process. …"
-
136
SQP fitness progress for TEP [56].
منشور في 2024"…This algorithm possesses the capability to adapt its search behavior in response to the changing dynamics of the optimization process. …"
-
137
Process fault of Tennessee Eastman process.
منشور في 2024"…This algorithm possesses the capability to adapt its search behavior in response to the changing dynamics of the optimization process. …"
-
138
ACSA fitness progress for TEP.
منشور في 2024"…This algorithm possesses the capability to adapt its search behavior in response to the changing dynamics of the optimization process. …"
-
139
Schematic diagram of TEP.
منشور في 2024"…This algorithm possesses the capability to adapt its search behavior in response to the changing dynamics of the optimization process. …"
-
140
Detection of fault 15.
منشور في 2024"…This algorithm possesses the capability to adapt its search behavior in response to the changing dynamics of the optimization process. …"