Search alternatives:
codon optimization » wolf optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
primary aim » primary care (Expand Search), primary data (Expand Search)
based codon » based color (Expand Search), based cohort (Expand Search), based action (Expand Search)
swarm » warm (Expand Search)
codon optimization » wolf optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
primary aim » primary care (Expand Search), primary data (Expand Search)
based codon » based color (Expand Search), based cohort (Expand Search), based action (Expand Search)
swarm » warm (Expand Search)
-
1
Fig 9 -
Published 2023“…We evaluated our method against four robust algorithms, namely particle swarm optimization-least square support vector regression (PSO-LSSV), BCRLS-multiple weighted dual extended Kalman filtering (BCRLS-MWDEKF), Total least square (TLS), and approximate weighted total least squares (AWTLS) in hybrid electric vehicle (HEV) and electric vehicle (EV) applications. …”
-
2
Predictive performance indicators.
Published 2023“…We evaluated our method against four robust algorithms, namely particle swarm optimization-least square support vector regression (PSO-LSSV), BCRLS-multiple weighted dual extended Kalman filtering (BCRLS-MWDEKF), Total least square (TLS), and approximate weighted total least squares (AWTLS) in hybrid electric vehicle (HEV) and electric vehicle (EV) applications. …”
-
3
Fig 8 -
Published 2023“…We evaluated our method against four robust algorithms, namely particle swarm optimization-least square support vector regression (PSO-LSSV), BCRLS-multiple weighted dual extended Kalman filtering (BCRLS-MWDEKF), Total least square (TLS), and approximate weighted total least squares (AWTLS) in hybrid electric vehicle (HEV) and electric vehicle (EV) applications. …”
-
4
GBO procedure.
Published 2023“…We evaluated our method against four robust algorithms, namely particle swarm optimization-least square support vector regression (PSO-LSSV), BCRLS-multiple weighted dual extended Kalman filtering (BCRLS-MWDEKF), Total least square (TLS), and approximate weighted total least squares (AWTLS) in hybrid electric vehicle (HEV) and electric vehicle (EV) applications. …”
-
5
LEO pseudocode.
Published 2023“…We evaluated our method against four robust algorithms, namely particle swarm optimization-least square support vector regression (PSO-LSSV), BCRLS-multiple weighted dual extended Kalman filtering (BCRLS-MWDEKF), Total least square (TLS), and approximate weighted total least squares (AWTLS) in hybrid electric vehicle (HEV) and electric vehicle (EV) applications. …”
-
6
Boxplots in EV tests.
Published 2023“…We evaluated our method against four robust algorithms, namely particle swarm optimization-least square support vector regression (PSO-LSSV), BCRLS-multiple weighted dual extended Kalman filtering (BCRLS-MWDEKF), Total least square (TLS), and approximate weighted total least squares (AWTLS) in hybrid electric vehicle (HEV) and electric vehicle (EV) applications. …”
-
7
GBO parameters for HEV.
Published 2023“…We evaluated our method against four robust algorithms, namely particle swarm optimization-least square support vector regression (PSO-LSSV), BCRLS-multiple weighted dual extended Kalman filtering (BCRLS-MWDEKF), Total least square (TLS), and approximate weighted total least squares (AWTLS) in hybrid electric vehicle (HEV) and electric vehicle (EV) applications. …”
-
8
GBO parameters for HEV.
Published 2023“…We evaluated our method against four robust algorithms, namely particle swarm optimization-least square support vector regression (PSO-LSSV), BCRLS-multiple weighted dual extended Kalman filtering (BCRLS-MWDEKF), Total least square (TLS), and approximate weighted total least squares (AWTLS) in hybrid electric vehicle (HEV) and electric vehicle (EV) applications. …”
-
9
MEAN and MAX error in (%).
Published 2023“…We evaluated our method against four robust algorithms, namely particle swarm optimization-least square support vector regression (PSO-LSSV), BCRLS-multiple weighted dual extended Kalman filtering (BCRLS-MWDEKF), Total least square (TLS), and approximate weighted total least squares (AWTLS) in hybrid electric vehicle (HEV) and electric vehicle (EV) applications. …”
-
10
<i>x</i><sub><i>j</i></sub>, and <i>y</i><sub><i>j</i></sub> variables for HEV tests.
Published 2023“…We evaluated our method against four robust algorithms, namely particle swarm optimization-least square support vector regression (PSO-LSSV), BCRLS-multiple weighted dual extended Kalman filtering (BCRLS-MWDEKF), Total least square (TLS), and approximate weighted total least squares (AWTLS) in hybrid electric vehicle (HEV) and electric vehicle (EV) applications. …”
-
11
The duration of a single cycle, measured in ms.
Published 2023“…We evaluated our method against four robust algorithms, namely particle swarm optimization-least square support vector regression (PSO-LSSV), BCRLS-multiple weighted dual extended Kalman filtering (BCRLS-MWDEKF), Total least square (TLS), and approximate weighted total least squares (AWTLS) in hybrid electric vehicle (HEV) and electric vehicle (EV) applications. …”
-
12
GBO framework used to estimate the battery SOH.
Published 2023“…We evaluated our method against four robust algorithms, namely particle swarm optimization-least square support vector regression (PSO-LSSV), BCRLS-multiple weighted dual extended Kalman filtering (BCRLS-MWDEKF), Total least square (TLS), and approximate weighted total least squares (AWTLS) in hybrid electric vehicle (HEV) and electric vehicle (EV) applications. …”
-
13
#EV PDF (drive cycle durations).
Published 2023“…We evaluated our method against four robust algorithms, namely particle swarm optimization-least square support vector regression (PSO-LSSV), BCRLS-multiple weighted dual extended Kalman filtering (BCRLS-MWDEKF), Total least square (TLS), and approximate weighted total least squares (AWTLS) in hybrid electric vehicle (HEV) and electric vehicle (EV) applications. …”