بدائل البحث:
process optimization » model optimization (توسيع البحث)
dose optimization » based optimization (توسيع البحث), model optimization (توسيع البحث), wolf optimization (توسيع البحث)
primary cycle » primary care (توسيع البحث), primary cause (توسيع البحث), primary cells (توسيع البحث)
cycle process » whole process (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
based dose » based case (توسيع البحث), based dosing (توسيع البحث)
process optimization » model optimization (توسيع البحث)
dose optimization » based optimization (توسيع البحث), model optimization (توسيع البحث), wolf optimization (توسيع البحث)
primary cycle » primary care (توسيع البحث), primary cause (توسيع البحث), primary cells (توسيع البحث)
cycle process » whole process (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
based dose » based case (توسيع البحث), based dosing (توسيع البحث)
-
21
Analysis PC1 AU-ROC curve.
منشور في 2024"…Moreover, traditional SDP models lack transparency and interpretability, which impacts stakeholder confidence in the Software Development Life Cycle (SDLC). We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. …"
-
22
Supporting data for “The role of forest composition heterogeneity on temperate ecosystem carbon dynamic under climate change"
منشور في 2025"…The process includes (1) harmonizing Landsat 5, 7, 8, and Sentinel-2 data using the HLS algorithm, and (2) filling temporal gaps with an optimized object-based STARFM fusion algorithm. …"
-
23
Data used to drive the Double Layer Carbon Model in the Qinling Mountains.
منشور في 2024"…These compartments help accurately simulate the dynamics of SOC by considering both the fast-cycling and slow-cycling components of organic matter decomposition. …"
-
24
-
25
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
منشور في 2025"…Experimental Methodology Framework Local Processing Pipeline Architecture Data Flow: Storage I/O → Memory Buffer → CPU/GPU Processing → Cache Coherency → Storage I/O ├── Input Vector: mmap() system call for zero-copy file access ├── Processing Engine: OpenMP parallelization with NUMA-aware thread affinity ├── Memory Management: Custom allocator with hugepage backing └── Output Vector: Direct I/O bypassing kernel page cache Cloud Processing Pipeline Architecture Data Flow: Local Storage → Network Stack → TLS Tunnel → CDN Edge → Origin Server → Processing Grid → Response Pipeline ├── Upload Phase: TCP window scaling with congestion control algorithms ├── Network Layer: Application-layer protocol with adaptive bitrate streaming ├── Server-side Processing: Containerized microservices on Kubernetes orchestration ├── Load Balancing: Consistent hashing with geographic affinity routing └── Download Phase: HTTP/2 multiplexing with server push optimization Dataset Schema and Semantic Structure Primary Data Vectors Field Data Type Semantic Meaning Measurement Unit test_type Categorical Processing paradigm identifier {local_processing, cloud_processing} photo_count Integer Cardinality of input asset vector Count avg_file_size_mb Float64 Mean per-asset storage footprint Mebibytes (2^20 bytes) total_volume_gb Float64 Aggregate data corpus size Gigabytes (10^9 bytes) processing_time_sec Integer Wall-clock execution duration Seconds (SI base unit) cpu_usage_watts Float64 Thermal design power consumption Watts (Joules/second) ram_usage_mb Integer Peak resident set size Mebibytes network_upload_mb Float64 Egress bandwidth utilization Mebibytes energy_consumption_kwh Float64 Cumulative energy expenditure Kilowatt-hours co2_equivalent_g Float64 Carbon footprint estimation Grams CO₂e test_date ISO8601 Temporal execution marker RFC 3339 format hardware_config String Node topology identifier Alphanumeric encoding Statistical Distribution Characteristics The dataset exhibits non-parametric distribution patterns with significant heteroscedasticity across computational load vectors. …"
-
26
Supplementary file 1_OncoPSM: an interactive tool for cost-effectiveness analysis using partitioned survival models in oncology trial.xlsx
منشور في 2025"…Based on these functions, we constructed Partitioned Survival Model (PSM), calculated the probability of each survival state per cycle, and combined these with utility values to compute the effect per cycle and the incremental effect for the experimental group. …"
-
27
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…</p><p dir="ltr">These biological metrics were used to define a binary toxicity label: entries were classified as toxic (1) or non-toxic (0) based on thresholds from standardized guidelines (e.g., ISO 10993-5:2009) and literature consensus. …"