Search alternatives:
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
based optimization » whale optimization (Expand Search)
primary data » primary care (Expand Search)
image driven » climate driven (Expand Search), wave driven (Expand Search), mapk driven (Expand Search)
data based » data used (Expand Search)
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
based optimization » whale optimization (Expand Search)
primary data » primary care (Expand Search)
image driven » climate driven (Expand Search), wave driven (Expand Search), mapk driven (Expand Search)
data based » data used (Expand Search)
-
141
The prediction error of each model.
Published 2025“…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …”
-
142
VIF analysis results for hazard-causing factors.
Published 2025“…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …”
-
143
Benchmark function information.
Published 2025“…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …”
-
144
Geographical distribution of the study area.
Published 2025“…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …”
-
145
Results for model hyperparameter values.
Published 2025“…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …”
-
146
Flow chart of this study.
Published 2025“…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …”
-
147
Stability analysis of each model.
Published 2025“…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …”
-
148
Robustness Analysis of each model.
Published 2025“…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …”
-
149
Proposed method approach.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
150
LSTM model performance.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
151
Descriptive statistics.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
152
CNN-LSTM Model performance.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
153
MLP Model performance.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
154
RNN Model performance.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
155
CNN Model performance.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
156
Bi-directional LSTM Model performance.
Published 2024“…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
-
157
-
158
-
159
Data used to drive the Double Layer Carbon Model in the Qinling Mountains.
Published 2024“…The simulation process of the DLCM involves initializing SOC stocks with spatially detailed baseline data, adding organic matter inputs based on vegetation production, and simulating microbial decomposition while adjusting for climate variables such as temperature and soil moisture. …”
-
160