Showing 1 - 20 results of 20 for search '(( primary data bayesian optimization algorithm ) OR ( primary data codon optimization algorithm ))', query time: 0.41s Refine Results
  1. 1
  2. 2

    Models’ performance without optimization. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  3. 3

    RNN performance comparison with/out optimization. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  4. 4

    XNet: A Bayesian Approach to Extracted Ion Chromatogram Clustering for Precursor Mass Spectrometry Data by Mathew Gutierrez (5844431)

    Published 2019
    “…While tandem mass spectrometry remains a primary method for identification and quantification, species-resolved precursor data provides a rich source of unexploited information. …”
  5. 5

    Proposed method approach. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  6. 6

    LSTM model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  7. 7

    Descriptive statistics. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  8. 8

    CNN-LSTM Model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  9. 9

    MLP Model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  10. 10

    RNN Model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  11. 11

    CNN Model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  12. 12

    Bi-directional LSTM Model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18

    Image1_Adverse events related to neuromuscular blocking agents: a disproportionality analysis of the FDA adverse event reporting system.pdf by Liangxia Li (17664248)

    Published 2024
    “…A positive signal was generated when both algorithms show an association between the target drug and the AE.…”
  19. 19

    Table1_Adverse events related to neuromuscular blocking agents: a disproportionality analysis of the FDA adverse event reporting system.xlsx by Liangxia Li (17664248)

    Published 2024
    “…A positive signal was generated when both algorithms show an association between the target drug and the AE.…”
  20. 20

    Supplementary file 1_A real-world disproportionality analysis of FDA adverse event reporting system (FAERS) events for lecanemab.docx by Linlin Yan (4480570)

    Published 2025
    “…Using the Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-item Gamma Poisson Shrinker (MGPS) algorithms, we conducted a comprehensive analysis of lecanemab-related AEs, restricting the analysis to AEs with the role code of primary suspect (PS).…”