يعرض 1 - 20 نتائج من 509 نتيجة بحث عن '(( primary data d optimization algorithm ) OR ( primary data _ optimization algorithm ))', وقت الاستعلام: 1.14s تنقيح النتائج
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    Features selected by optimization algorithms. حسب Afnan M. Alhassan (18349378)

    منشور في 2024
    "…Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …"
  6. 6
  7. 7
  8. 8

    Machine learning deployment strategies and schematic illustration of the proposed generative adversarial algorithm for domain adaptation. حسب Aly A. Valliani (13251484)

    منشور في 2022
    "…<p><b>(A)</b> There are four primary methods by which machine learning models can be deployed in a context with distinct data domains: 1) train a model on one domain and deploy it across multiple distinct domains, 2) train multiple bespoke models that are optimized for deployment on individual domains, 3) train and deploy a single global model on all domains, and 4) train a model on one domain and adapt it through technical means to make it performant on a distinct domain. …"
  9. 9
  10. 10

    S1 Data - حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    Parameter settings for algorithms. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  16. 16

    Parameter settings for algorithms. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  17. 17
  18. 18
  19. 19
  20. 20