يعرض 1 - 20 نتائج من 21 نتيجة بحث عن '(( primary data drawing optimization algorithm ) OR ( binary based codon optimization algorithm ))', وقت الاستعلام: 0.60s تنقيح النتائج
  1. 1

    S1 Data - حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  2. 2

    Parameter settings for algorithms. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  3. 3

    Parameter settings for algorithms. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  4. 4

    Average runtime of different algorithms. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  5. 5

    Average runtime of different algorithms. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  6. 6

    Flowchart of GJO-GWO algorithm. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  7. 7

    Detailed information of benchmark functions. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  8. 8

    Evaluation metrics of the models’ performance. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  9. 9

    Detailed information of datasets. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  10. 10

    Friedman test results. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  11. 11

    Average number of selected features. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  12. 12

    Wilcoxon rank sum test results. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  13. 13

    Wilcoxon rank sum test results. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  14. 14

    Average number of selected features. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  15. 15

    Minimal Dateset. حسب Hongwei Yue (574068)

    منشور في 2025
    "…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …"
  16. 16

    Loss Function Comparison. حسب Hongwei Yue (574068)

    منشور في 2025
    "…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …"
  17. 17

    Comparative Results of Different Models. حسب Hongwei Yue (574068)

    منشور في 2025
    "…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …"
  18. 18

    Loss Function Comparison. حسب Hongwei Yue (574068)

    منشور في 2025
    "…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …"
  19. 19

    Overall Framework of the PSO-KM Model. حسب Hongwei Yue (574068)

    منشور في 2025
    "…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …"
  20. 20

    Overall Framework of the PSO-KM Model. حسب Hongwei Yue (574068)

    منشور في 2025
    "…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …"