Showing 1 - 17 results of 17 for search '(( primary data driven optimization algorithm ) OR ( binary bp model optimization algorithm ))*', query time: 0.48s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    Data used to drive the Double Layer Carbon Model in the Qinling Mountains. by Huiwen Li (17705280)

    Published 2024
    “…The model divides the soil profile into topsoil (0-20 cm) and subsoil (20–100 cm) layers to match the SOC maps of the corresponding two layers generated by data-driven models. Each of these layers contains a young carbon pool (CY) with a higher decomposition rate and an old carbon pool (CO) with a lower decomposition rate. …”
  11. 11

    Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning by Lu Xin (728966)

    Published 2021
    “…Furthermore, it reflects strong potentialities to develop data-driven individualized chemotherapy treatments in the future.…”
  12. 12

    Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning by Lu Xin (728966)

    Published 2021
    “…Furthermore, it reflects strong potentialities to develop data-driven individualized chemotherapy treatments in the future.…”
  13. 13
  14. 14
  15. 15
  16. 16

    Table_1_Machine Learning Techniques in Blood Pressure Management During the Acute Phase of Ischemic Stroke.DOCX by Orit Mazza (12081914)

    Published 2022
    “…Decision trees were constructed by a hierarchical binary recursive partitioning algorithm to predict the BP-lowering of 10–30% off the maximal value when antihypertensive treatment was given in patients with an extremely high BP (above 220/110 or 180/105 mmHg for patients receiving thrombolysis), according to the American Heart Association/American Stroke Association (AHA/ASA), the European Society of Cardiology, and the European Society of Hypertension (ESC/ESH) guidelines. …”
  17. 17

    Table_1_A Phenotyping of Diastolic Function by Machine Learning Improves Prediction of Clinical Outcomes in Heart Failure.DOCX by Haruka Kameshima (11870333)

    Published 2021
    “…</p><p>Conclusion: Machine learning can identify patterns of diastolic function that better stratify the risk for decompensation than the current consensus recommendations in HF. Integrating this data-driven phenotyping may help in refining prognostication and optimizing treatment.…”