Showing 1 - 19 results of 19 for search '(( primary data driven optimization algorithm ) OR ( binary data joint optimization algorithm ))', query time: 0.57s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes by Yu Y. (3096192)

    Published 2022
    “…Introduction: Increasingly, logistic regression methods for genetic association studies of binary phenotypes must be able to accommodate data sparsity, which arises from unbalanced case-control ratios and/or rare genetic variants. …”
  11. 11
  12. 12

    Data used to drive the Double Layer Carbon Model in the Qinling Mountains. by Huiwen Li (17705280)

    Published 2024
    “…The model divides the soil profile into topsoil (0-20 cm) and subsoil (20–100 cm) layers to match the SOC maps of the corresponding two layers generated by data-driven models. Each of these layers contains a young carbon pool (CY) with a higher decomposition rate and an old carbon pool (CO) with a lower decomposition rate. …”
  13. 13

    Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning by Lu Xin (728966)

    Published 2021
    “…Furthermore, it reflects strong potentialities to develop data-driven individualized chemotherapy treatments in the future.…”
  14. 14

    Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning by Lu Xin (728966)

    Published 2021
    “…Furthermore, it reflects strong potentialities to develop data-driven individualized chemotherapy treatments in the future.…”
  15. 15
  16. 16
  17. 17

    Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods by Jiacong Du (12035845)

    Published 2022
    “…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …”
  18. 18
  19. 19

    Table_1_A Phenotyping of Diastolic Function by Machine Learning Improves Prediction of Clinical Outcomes in Heart Failure.DOCX by Haruka Kameshima (11870333)

    Published 2021
    “…</p><p>Conclusion: Machine learning can identify patterns of diastolic function that better stratify the risk for decompensation than the current consensus recommendations in HF. Integrating this data-driven phenotyping may help in refining prognostication and optimizing treatment.…”