بدائل البحث:
feature optimization » resource optimization (توسيع البحث), feature elimination (توسيع البحث), structure optimization (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
data feature » data figure (توسيع البحث), each feature (توسيع البحث), a feature (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
feature optimization » resource optimization (توسيع البحث), feature elimination (توسيع البحث), structure optimization (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
data feature » data figure (توسيع البحث), each feature (توسيع البحث), a feature (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
-
1
Features selected by optimization algorithms.
منشور في 2024"…Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …"
-
2
-
3
DE algorithm flow.
منشور في 2025"…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …"
-
4
Test results of different algorithms.
منشور في 2025"…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …"
-
5
MSE for ILSTM algorithm in binary classification.
منشور في 2023"…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …"
-
6
Average number of selected features.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
7
Average number of selected features.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
8
Hybrid feature selection algorithm of CSCO-ROA.
منشور في 2024"…Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …"
-
9
S1 Data -
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
10
Parameter settings for algorithms.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
11
Parameter settings for algorithms.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
12
-
13
Algorithm for generating hyperparameter.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
14
Average runtime of different algorithms.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
15
Average runtime of different algorithms.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
16
Flowchart of GJO-GWO algorithm.
منشور في 2024"…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
-
17
-
18
Results of machine learning algorithm.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
19
-
20