بدائل البحث:
feature optimization » resource optimization (توسيع البحث), feature elimination (توسيع البحث), structure optimization (توسيع البحث)
driven optimization » design optimization (توسيع البحث), guided optimization (توسيع البحث), dose optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
data feature » data figure (توسيع البحث), each feature (توسيع البحث), a feature (توسيع البحث)
image driven » climate driven (توسيع البحث), wave driven (توسيع البحث), mapk driven (توسيع البحث)
feature optimization » resource optimization (توسيع البحث), feature elimination (توسيع البحث), structure optimization (توسيع البحث)
driven optimization » design optimization (توسيع البحث), guided optimization (توسيع البحث), dose optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
data feature » data figure (توسيع البحث), each feature (توسيع البحث), a feature (توسيع البحث)
image driven » climate driven (توسيع البحث), wave driven (توسيع البحث), mapk driven (توسيع البحث)
-
141
-
142
-
143
IUTF Dataset(Enhanced): Enabling Cross-Border Resource for Analysing the Impact of Rainfall on Urban Transportation Systems
منشور في 2025"…</p><p dir="ltr"><b>Quality Assurance</b>: Comprehensive technical validation demonstrates the dataset's integrity, sensitivity to rainfall impacts, and capability to reveal complex traffic-weather interaction patterns.</p><h2>Data Structure</h2><p dir="ltr">The dataset is organized into four primary components:</p><ol><li><b>Road Network Data</b>: Topological representations including spatial geometry, functional classification, and connectivity information</li><li><b>Traffic Sensor Data</b>: Sensor metadata, locations, and measurements at both 5-minute and hourly resolutions</li><li><b>Precipitation Data</b>: Hourly meteorological information with spatial grid cell metadata</li><li><b>Derived Analytical Matrices</b>: Pre-computed structures for advanced spatial-temporal modelling and network analyses</li></ol><h2>File Formats</h2><ul><li><b>Tabular Data</b>: Apache Parquet format for optimal compression and fast query performance</li><li><b>Numerical Matrices</b>: NumPy NPZ format for efficient scientific computing</li><li><b>Total Size</b>: Approximately 2 GB uncompressed</li></ul><h2>Applications</h2><p dir="ltr">The IUTF dataset enables diverse analytical applications including:</p><ul><li><b>Traffic Flow Prediction</b>: Developing weather-aware traffic forecasting models</li><li><b>Infrastructure Planning</b>: Identifying vulnerable network components and prioritizing investments</li><li><b>Resilience Assessment</b>: Quantifying system recovery curves, robustness metrics, and adaptive capacity</li><li><b>Climate Adaptation</b>: Supporting evidence-based transportation planning under changing precipitation patterns</li><li><b>Emergency Management</b>: Improving response strategies for weather-related traffic disruptions</li></ul><h2>Methodology</h2><p dir="ltr">The dataset creation involved three main stages:</p><ol><li><b>Data Collection</b>: Sourcing traffic data from UTD19, road networks from OpenStreetMap, and precipitation data from ERA5 reanalysis</li><li><b>Spatio-Temporal Harmonization</b>: Comprehensive integration using novel algorithms for spatial alignment and temporal synchronization</li><li><b>Quality Assurance</b>: Rigorous validation and technical verification across all cities and data components</li></ol><h2>Code Availability</h2><p dir="ltr">Processing code is available at: https://github.com/viviRG2024/IUTDF_processing</p>…"
-
144
Extraction and expression of architectural color.
منشور في 2023"…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
-
145
Basic color value distribution map of the street.
منشور في 2023"…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
-
146
SegNet architecture.
منشور في 2023"…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
-
147
Overview of workflow.
منشور في 2023"…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
-
148
Descriptive statistics for the volunteers.
منشور في 2023"…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
-
149
Jiefang North Road Street.
منشور في 2023"…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
-
150
Colors with different number of clusters.
منشور في 2023"…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
-
151
-
152
-
153
Table_4_High-Order Correlation Integration for Single-Cell or Bulk RNA-seq Data Analysis.XLSX
منشور في 2019"…Reducing noise pollution to data and ensuring the extracted intrinsic patterns in concordance with the primary data structure are important in sample clustering and classification. …"
-
154
Table_2_High-Order Correlation Integration for Single-Cell or Bulk RNA-seq Data Analysis.XLSX
منشور في 2019"…Reducing noise pollution to data and ensuring the extracted intrinsic patterns in concordance with the primary data structure are important in sample clustering and classification. …"
-
155
Table_1_High-Order Correlation Integration for Single-Cell or Bulk RNA-seq Data Analysis.docx
منشور في 2019"…Reducing noise pollution to data and ensuring the extracted intrinsic patterns in concordance with the primary data structure are important in sample clustering and classification. …"
-
156
Table_3_High-Order Correlation Integration for Single-Cell or Bulk RNA-seq Data Analysis.XLS
منشور في 2019"…Reducing noise pollution to data and ensuring the extracted intrinsic patterns in concordance with the primary data structure are important in sample clustering and classification. …"
-
157
Table_5_High-Order Correlation Integration for Single-Cell or Bulk RNA-seq Data Analysis.XLSX
منشور في 2019"…Reducing noise pollution to data and ensuring the extracted intrinsic patterns in concordance with the primary data structure are important in sample clustering and classification. …"
-
158
-
159
Data Sheet 1_Triglyceride-glucose index and mortality in congestive heart failure with diabetes: a machine learning predictive model.doc
منشور في 2025"…Subgroup analyses were conducted based on age, gender, chronic pulmonary disease, atrial fibrillation, hypertension, and mechanical ventilation to assess the robustness of our findings. Feature selection was performed using LASSO regression, and predictive modeling was carried out using machine learning algorithms.…"
-
160
Supplementary file 1_A study on a real-world data-based VTE risk prediction model for lymphoma patients.docx
منشور في 2025"…Model development incorporated three imputation methods, three sampling strategies, three feature selection approaches, and nine machine learning algorithms. …"