يعرض 141 - 160 نتائج من 187 نتيجة بحث عن '(( primary data feature optimization algorithm ) OR ( binary image driven optimization algorithm ))', وقت الاستعلام: 0.34s تنقيح النتائج
  1. 141
  2. 142
  3. 143

    IUTF Dataset(Enhanced): Enabling Cross-Border Resource for Analysing the Impact of Rainfall on Urban Transportation Systems حسب Xuhui Lin (19505503)

    منشور في 2025
    "…</p><p dir="ltr"><b>Quality Assurance</b>: Comprehensive technical validation demonstrates the dataset's integrity, sensitivity to rainfall impacts, and capability to reveal complex traffic-weather interaction patterns.</p><h2>Data Structure</h2><p dir="ltr">The dataset is organized into four primary components:</p><ol><li><b>Road Network Data</b>: Topological representations including spatial geometry, functional classification, and connectivity information</li><li><b>Traffic Sensor Data</b>: Sensor metadata, locations, and measurements at both 5-minute and hourly resolutions</li><li><b>Precipitation Data</b>: Hourly meteorological information with spatial grid cell metadata</li><li><b>Derived Analytical Matrices</b>: Pre-computed structures for advanced spatial-temporal modelling and network analyses</li></ol><h2>File Formats</h2><ul><li><b>Tabular Data</b>: Apache Parquet format for optimal compression and fast query performance</li><li><b>Numerical Matrices</b>: NumPy NPZ format for efficient scientific computing</li><li><b>Total Size</b>: Approximately 2 GB uncompressed</li></ul><h2>Applications</h2><p dir="ltr">The IUTF dataset enables diverse analytical applications including:</p><ul><li><b>Traffic Flow Prediction</b>: Developing weather-aware traffic forecasting models</li><li><b>Infrastructure Planning</b>: Identifying vulnerable network components and prioritizing investments</li><li><b>Resilience Assessment</b>: Quantifying system recovery curves, robustness metrics, and adaptive capacity</li><li><b>Climate Adaptation</b>: Supporting evidence-based transportation planning under changing precipitation patterns</li><li><b>Emergency Management</b>: Improving response strategies for weather-related traffic disruptions</li></ul><h2>Methodology</h2><p dir="ltr">The dataset creation involved three main stages:</p><ol><li><b>Data Collection</b>: Sourcing traffic data from UTD19, road networks from OpenStreetMap, and precipitation data from ERA5 reanalysis</li><li><b>Spatio-Temporal Harmonization</b>: Comprehensive integration using novel algorithms for spatial alignment and temporal synchronization</li><li><b>Quality Assurance</b>: Rigorous validation and technical verification across all cities and data components</li></ol><h2>Code Availability</h2><p dir="ltr">Processing code is available at: https://github.com/viviRG2024/IUTDF_processing</p>…"
  4. 144

    Extraction and expression of architectural color. حسب Xin Han (1329648)

    منشور في 2023
    "…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
  5. 145

    Basic color value distribution map of the street. حسب Xin Han (1329648)

    منشور في 2023
    "…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
  6. 146

    SegNet architecture. حسب Xin Han (1329648)

    منشور في 2023
    "…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
  7. 147

    Overview of workflow. حسب Xin Han (1329648)

    منشور في 2023
    "…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
  8. 148

    Descriptive statistics for the volunteers. حسب Xin Han (1329648)

    منشور في 2023
    "…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
  9. 149

    Jiefang North Road Street. حسب Xin Han (1329648)

    منشور في 2023
    "…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
  10. 150

    Colors with different number of clusters. حسب Xin Han (1329648)

    منشور في 2023
    "…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
  11. 151
  12. 152
  13. 153

    Table_4_High-Order Correlation Integration for Single-Cell or Bulk RNA-seq Data Analysis.XLSX حسب Hui Tang (226667)

    منشور في 2019
    "…Reducing noise pollution to data and ensuring the extracted intrinsic patterns in concordance with the primary data structure are important in sample clustering and classification. …"
  14. 154

    Table_2_High-Order Correlation Integration for Single-Cell or Bulk RNA-seq Data Analysis.XLSX حسب Hui Tang (226667)

    منشور في 2019
    "…Reducing noise pollution to data and ensuring the extracted intrinsic patterns in concordance with the primary data structure are important in sample clustering and classification. …"
  15. 155

    Table_1_High-Order Correlation Integration for Single-Cell or Bulk RNA-seq Data Analysis.docx حسب Hui Tang (226667)

    منشور في 2019
    "…Reducing noise pollution to data and ensuring the extracted intrinsic patterns in concordance with the primary data structure are important in sample clustering and classification. …"
  16. 156

    Table_3_High-Order Correlation Integration for Single-Cell or Bulk RNA-seq Data Analysis.XLS حسب Hui Tang (226667)

    منشور في 2019
    "…Reducing noise pollution to data and ensuring the extracted intrinsic patterns in concordance with the primary data structure are important in sample clustering and classification. …"
  17. 157

    Table_5_High-Order Correlation Integration for Single-Cell or Bulk RNA-seq Data Analysis.XLSX حسب Hui Tang (226667)

    منشور في 2019
    "…Reducing noise pollution to data and ensuring the extracted intrinsic patterns in concordance with the primary data structure are important in sample clustering and classification. …"
  18. 158
  19. 159

    Data Sheet 1_Triglyceride-glucose index and mortality in congestive heart failure with diabetes: a machine learning predictive model.doc حسب Lin Yu (221619)

    منشور في 2025
    "…Subgroup analyses were conducted based on age, gender, chronic pulmonary disease, atrial fibrillation, hypertension, and mechanical ventilation to assess the robustness of our findings. Feature selection was performed using LASSO regression, and predictive modeling was carried out using machine learning algorithms.…"
  20. 160

    Supplementary file 1_A study on a real-world data-based VTE risk prediction model for lymphoma patients.docx حسب Changli He (22424818)

    منشور في 2025
    "…Model development incorporated three imputation methods, three sampling strategies, three feature selection approaches, and nine machine learning algorithms. …"