Showing 141 - 160 results of 229 for search '(( primary data feature optimization algorithm ) OR ( binary time process optimization algorithm ))', query time: 0.57s Refine Results
  1. 141

    Overview of SPAM-XAI model complete architecture. by Mohd Mustaqeem (19106494)

    Published 2024
    “…However, SDP faces challenges like imbalanced data, high-dimensional features, model overfitting, and outliers. …”
  2. 142

    SPAM-XAI using the PC1 dataset. by Mohd Mustaqeem (19106494)

    Published 2024
    “…However, SDP faces challenges like imbalanced data, high-dimensional features, model overfitting, and outliers. …”
  3. 143

    SPAM-XAI using the CM1 dataset. by Mohd Mustaqeem (19106494)

    Published 2024
    “…However, SDP faces challenges like imbalanced data, high-dimensional features, model overfitting, and outliers. …”
  4. 144

    Analysis of CM1 ROC curve. by Mohd Mustaqeem (19106494)

    Published 2024
    “…However, SDP faces challenges like imbalanced data, high-dimensional features, model overfitting, and outliers. …”
  5. 145

    SPAM-XAI confusion matrix using PC1 dataset. by Mohd Mustaqeem (19106494)

    Published 2024
    “…However, SDP faces challenges like imbalanced data, high-dimensional features, model overfitting, and outliers. …”
  6. 146

    Analysis PC1 AU-ROC curve. by Mohd Mustaqeem (19106494)

    Published 2024
    “…However, SDP faces challenges like imbalanced data, high-dimensional features, model overfitting, and outliers. …”
  7. 147

    Table_1_bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease.docx by Yupeng Li (507508)

    Published 2023
    “…</p>Methods<p>This paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. …”
  8. 148

    Table_1_Enriching the Study Population for Ischemic Stroke Therapeutic Trials Using a Machine Learning Algorithm.pdf by Jenish Maharjan (11998331)

    Published 2022
    “…</p>Methods<p>A retrospective study was performed using 41,970 qualifying patient encounters with ischemic stroke from inpatient visits recorded from over 700 inpatient and ambulatory care sites. Patient data were extracted from electronic health records and used to train and test a gradient boosted machine learning algorithm (MLA) to predict the patients' risk of experiencing ischemic stroke from the period of 1 day up to 1 year following the patient encounter. …”
  9. 149

    Image_1_Enriching the Study Population for Ischemic Stroke Therapeutic Trials Using a Machine Learning Algorithm.pdf by Jenish Maharjan (11998331)

    Published 2022
    “…</p>Methods<p>A retrospective study was performed using 41,970 qualifying patient encounters with ischemic stroke from inpatient visits recorded from over 700 inpatient and ambulatory care sites. Patient data were extracted from electronic health records and used to train and test a gradient boosted machine learning algorithm (MLA) to predict the patients' risk of experiencing ischemic stroke from the period of 1 day up to 1 year following the patient encounter. …”
  10. 150
  11. 151

    Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield... by Uttam Khatri (12689072)

    Published 2022
    “…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”
  12. 152

    Confusion matrix. by Yixian Wen (12201388)

    Published 2025
    “…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
  13. 153

    Parameter settings. by Yixian Wen (12201388)

    Published 2025
    “…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
  14. 154

    Minimal Dateset. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  15. 155

    Loss Function Comparison. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  16. 156

    Comparative Results of Different Models. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  17. 157

    Loss Function Comparison. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  18. 158
  19. 159

    Overall Framework of the PSO-KM Model. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  20. 160

    Overall Framework of the PSO-KM Model. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”