Search alternatives:
feature optimization » resource optimization (Expand Search), feature elimination (Expand Search), structure optimization (Expand Search)
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
primary data » primary care (Expand Search)
data feature » data figure (Expand Search), each feature (Expand Search), a feature (Expand Search)
binary wave » binary image (Expand Search)
feature optimization » resource optimization (Expand Search), feature elimination (Expand Search), structure optimization (Expand Search)
driven optimization » design optimization (Expand Search), guided optimization (Expand Search), dose optimization (Expand Search)
primary data » primary care (Expand Search)
data feature » data figure (Expand Search), each feature (Expand Search), a feature (Expand Search)
binary wave » binary image (Expand Search)
-
161
-
162
-
163
Table_1_Prediction of pCR based on clinical-radiomic model in patients with locally advanced ESCC treated with neoadjuvant immunotherapy plus chemoradiotherapy.docx
Published 2024“…Concurrently, related clinical data was amassed. Feature selection was facilitated using the Extreme Gradient Boosting (XGBoost) algorithm, with model validation conducted via fivefold cross-validation. …”
-
164
Table 1_An interpreting machine learning models to predict amputation risk in patients with diabetic foot ulcers: a multi-center study.doc
Published 2025“…Following hyperparameter optimization, the XGBoost model achieved the best amputation prediction performance with an accuracy of 0.94, a precision of 0.96, an F1 score of 0.94 and an AUC of 0.93 for the internal validation set on the basis of the 17 features. …”
-
165
Supplementary file 2_Machine learning enables early risk stratification of hymenopteran stings: evidence from a tropical multicenter cohort.xlsx
Published 2025“…Questionnaires with >20% missing data were excluded. Mean substitution was applied for primary missing data imputation, with multiple imputation by chained equations (MICE) used for sensitivity analysis. …”
-
166
Image 1_Machine learning enables early risk stratification of hymenopteran stings: evidence from a tropical multicenter cohort.png
Published 2025“…Questionnaires with >20% missing data were excluded. Mean substitution was applied for primary missing data imputation, with multiple imputation by chained equations (MICE) used for sensitivity analysis. …”
-
167
Supplementary file 1_Machine learning enables early risk stratification of hymenopteran stings: evidence from a tropical multicenter cohort.docx
Published 2025“…Questionnaires with >20% missing data were excluded. Mean substitution was applied for primary missing data imputation, with multiple imputation by chained equations (MICE) used for sensitivity analysis. …”
-
168
Image 2_Machine learning enables early risk stratification of hymenopteran stings: evidence from a tropical multicenter cohort.png
Published 2025“…Questionnaires with >20% missing data were excluded. Mean substitution was applied for primary missing data imputation, with multiple imputation by chained equations (MICE) used for sensitivity analysis. …”
-
169
DATASET AI
Published 2025“…</p><p dir="ltr">The primary aim of this dataset is to enable the development and validation of machine learning models for:</p><ul><li>Early identification of STEMI patients at high risk of developing cardiogenic shock;</li><li>Clinical triage optimization and prioritization for urgent angiography;</li><li>Supporting time-sensitive decision-making in resource-limited or overcrowded emergency settings.…”
-
170
CSPP instance
Published 2025“…</b></p><p dir="ltr">Its primary function is to create structured datasets that simulate container terminal operations, which can then be used for developing, testing, and benchmarking optimization algorithms (e.g., for yard stacking strategies, vessel stowage planning).…”
-
171
Image 1_Development of machine learning predictive model for type 2 diabetic retinopathy using the triglyceride-glucose index explained by SHAP method.png
Published 2025“…Baseline data were collected, and variables were selected using Recursive Feature Elimination with Cross-Validation (RFECV). …”
-
172
Image 2_Development of machine learning predictive model for type 2 diabetic retinopathy using the triglyceride-glucose index explained by SHAP method.png
Published 2025“…Baseline data were collected, and variables were selected using Recursive Feature Elimination with Cross-Validation (RFECV). …”
-
173
2000–2020 Monthly Air Quality Index (AQI) Dataset of China
Published 2025“…Four tree-based ensemble algorithms (Random Forest [RF], Gradient Boosting Machine [GBM], CatBoost, XGBoost) were compared, with the RF model selected as optimal (test set: R² = 0.83, Root Mean Square Error [RMSE] = 10.25, Mean Absolute Error [MAE] = 9.03) after validation via 10-fold geographic stratified cross-validation and 100 bootstrap iterations; Recursive Feature Elimination (RFE) further refined 14 core predictors to minimize overfitting. …”
-
174
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
Published 2025“…Cloud Workflows}, author={AlbumForge Research Team}, year={2025}, publisher={Figshare}, doi={10.6084/m9.figshare.XXXXXXX}, url={https://figshare.com/articles/dataset/XXXXXXX} } Contributing and Data Governance Issue Reporting Technical issues, data quality concerns, or methodological questions should be reported via GitHub Issues with the following template: **Issue Type**: [Bug Report / Data Quality / Methodology Question] **Hardware Configuration**: [Specify if applicable] **Dataset Version**: [e.g., v1.0.0] **Description**: [Detailed description of the issue] **Reproducibility**: [Steps to reproduce if applicable] **Expected Behavior**: [What should happen] **Actual Behavior**: [What actually happens] Data Update Protocol Dataset versioning follows semantic versioning (SemVer) principles: Major version (X.0.0): Incompatible schema changes Minor version (0.X.0): Backward-compatible feature additions Patch version (0.0.X): Backward-compatible bug fixes Technical Support and Community For advanced technical discussions, algorithmic improvements, or collaborative research opportunities, please contact: Primary Maintainer: research@albumforge.com Technical Issues: github.com/albumforge/ecological-benchmark/issues Methodology Discussions: [Academic collaboration portal] Industry Partnerships: partnerships@albumforge.com Acknowledgments: This research was conducted using computational resources provided by AlbumForge (https://albumforge.com) under the Green Computing Initiative. …”
-
175
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”
-
176
Image_3_Predicting Flow Rate Escalation for Pediatric Patients on High Flow Nasal Cannula Using Machine Learning.PDF
Published 2021“…<p>Background: High flow nasal cannula (HFNC) is commonly used as non-invasive respiratory support in critically ill children. There are limited data to inform consensus on optimal device parameters, determinants of successful patient response, and indications for escalation of support. …”
-
177
Image_5_Predicting Flow Rate Escalation for Pediatric Patients on High Flow Nasal Cannula Using Machine Learning.PDF
Published 2021“…<p>Background: High flow nasal cannula (HFNC) is commonly used as non-invasive respiratory support in critically ill children. There are limited data to inform consensus on optimal device parameters, determinants of successful patient response, and indications for escalation of support. …”
-
178
Table_3_Predicting Flow Rate Escalation for Pediatric Patients on High Flow Nasal Cannula Using Machine Learning.docx
Published 2021“…<p>Background: High flow nasal cannula (HFNC) is commonly used as non-invasive respiratory support in critically ill children. There are limited data to inform consensus on optimal device parameters, determinants of successful patient response, and indications for escalation of support. …”
-
179
Table_1_Predicting Flow Rate Escalation for Pediatric Patients on High Flow Nasal Cannula Using Machine Learning.docx
Published 2021“…<p>Background: High flow nasal cannula (HFNC) is commonly used as non-invasive respiratory support in critically ill children. There are limited data to inform consensus on optimal device parameters, determinants of successful patient response, and indications for escalation of support. …”
-
180
Image_1_Predicting Flow Rate Escalation for Pediatric Patients on High Flow Nasal Cannula Using Machine Learning.PDF
Published 2021“…<p>Background: High flow nasal cannula (HFNC) is commonly used as non-invasive respiratory support in critically ill children. There are limited data to inform consensus on optimal device parameters, determinants of successful patient response, and indications for escalation of support. …”