بدائل البحث:
guided optimization » based optimization (توسيع البحث), model optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
binary data » dietary data (توسيع البحث)
guided optimization » based optimization (توسيع البحث), model optimization (توسيع البحث)
wolf optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), _ optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
binary data » dietary data (توسيع البحث)
-
1
The flowchart of the proposed algorithm.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
2
Models’ performance without optimization.
منشور في 2024"…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …"
-
3
Data_Sheet_1_Prediction of patient choice tendency in medical decision-making based on machine learning algorithm.pdf
منشور في 2023"…Objective<p>Machine learning (ML) algorithms, as an early branch of artificial intelligence technology, can effectively simulate human behavior by training on data from the training set. …"
-
4
RNN performance comparison with/out optimization.
منشور في 2024"…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …"
-
5
Summary of literature review.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
6
Topic description.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
7
Notations along with their descriptions.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
8
Detail of the topics extracted from DUC2002.
منشور في 2024"…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
-
9
-
10
-
11
Datasets used for the study and their sources.
منشور في 2023"…Projecting into 2030, this study aimed at providing geographical information data for guiding future policies on siting required healthcare facilities. …"
-
12
-
13
-
14
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
منشور في 2024"…Next, a hybrid feature extraction approach is presented leveraging transfer learning from selected deep neural network models, InceptionV3 and DenseNet201, to extract comprehensive feature sets. To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …"
-
15
Proposed method approach.
منشور في 2024"…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …"
-
16
LSTM model performance.
منشور في 2024"…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …"
-
17
Descriptive statistics.
منشور في 2024"…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …"
-
18
CNN-LSTM Model performance.
منشور في 2024"…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …"
-
19
MLP Model performance.
منشور في 2024"…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …"
-
20
RNN Model performance.
منشور في 2024"…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …"