Showing 1 - 20 results of 32 for search '(( primary data guided optimization algorithm ) OR ( binary wave process optimization algorithm ))*', query time: 0.27s Refine Results
  1. 1

    Models’ performance without optimization. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  2. 2

    Data_Sheet_1_Prediction of patient choice tendency in medical decision-making based on machine learning algorithm.pdf by Yuwen Lyu (14330781)

    Published 2023
    “…Objective<p>Machine learning (ML) algorithms, as an early branch of artificial intelligence technology, can effectively simulate human behavior by training on data from the training set. …”
  3. 3

    RNN performance comparison with/out optimization. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  4. 4
  5. 5
  6. 6

    Datasets used for the study and their sources. by Peter N-jonaam Mahama (15347793)

    Published 2023
    “…Projecting into 2030, this study aimed at providing geographical information data for guiding future policies on siting required healthcare facilities. …”
  7. 7
  8. 8

    MCLP_quantum_annealer_V0.5 by Anonymous Anonymous (4854526)

    Published 2025
    “…Theoretical and applied experiments are conducted using four solvers: QBSolv, D-Wave Hybrid binary quadratic model 2, D-Wave Advantage system 4.1, and Gurobi. …”
  9. 9
  10. 10

    Proposed method approach. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  11. 11

    LSTM model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  12. 12

    Descriptive statistics. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  13. 13

    CNN-LSTM Model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  14. 14

    MLP Model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  15. 15

    RNN Model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  16. 16

    CNN Model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  17. 17

    Bi-directional LSTM Model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  18. 18
  19. 19

    Image 2_Integrative prognostic modeling for stage III lung adenosquamous carcinoma post-tumor resection: machine learning insights and web-based implementation.png by Min Liang (363007)

    Published 2024
    “…Introduction<p>The prognostic landscape of stage III Lung Adenosquamous Carcinoma (ASC) following primary tumor resection remains underexplored. A thoughtfully developed prognostic model has the potential to guide clinicians in patient counseling and the formulation of effective therapeutic strategies.…”
  20. 20

    Image 1_Integrative prognostic modeling for stage III lung adenosquamous carcinoma post-tumor resection: machine learning insights and web-based implementation.png by Min Liang (363007)

    Published 2024
    “…Introduction<p>The prognostic landscape of stage III Lung Adenosquamous Carcinoma (ASC) following primary tumor resection remains underexplored. A thoughtfully developed prognostic model has the potential to guide clinicians in patient counseling and the formulation of effective therapeutic strategies.…”