Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
primary data » primary care (Expand Search)
data model » data models (Expand Search)
a process » _ process (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
primary data » primary care (Expand Search)
data model » data models (Expand Search)
a process » _ process (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
-
81
Simulation parameters.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
82
Training losses for N = 10.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
83
Normalized computation rate for N = 10.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
84
Summary of Notations Used in this paper.
Published 2025“…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …”
-
85
Data Sheet 1_TBESO-BP: an improved regression model for predicting subclinical mastitis.pdf
Published 2025“…The model is based on TBESO (Multi-strategy Boosted Snake Optimizer) and utilizes monthly Dairy Herd Improvement (DHI) data to forecast the status of subclinical mastitis in cows.…”
-
86
-
87
-
88
Wilcoxon test results for feature selection.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
89
Feature selection metrics and their definitions.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
90
Statistical summary of all models.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
91
Feature selection results.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
92
ANOVA test for feature selection.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
93
Classification performance of ML and DL models.
Published 2025“…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
-
94
-
95
-
96
-
97
-
98
Data used in this study.
Published 2024“…In the hybrid model of this paper, the choice was made to use the Densenet architecture of CNN models with LightGBM as the primary model. …”
-
99
-
100
Hyperparameters of the LSTM Model.
Published 2025“…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”