Search alternatives:
design optimization » bayesian optimization (Expand Search)
phase optimization » whale optimization (Expand Search), based optimization (Expand Search), path optimization (Expand Search)
primary data » primary care (Expand Search)
image design » images designed (Expand Search), simple design (Expand Search), space design (Expand Search)
data phase » late phase (Expand Search)
design optimization » bayesian optimization (Expand Search)
phase optimization » whale optimization (Expand Search), based optimization (Expand Search), path optimization (Expand Search)
primary data » primary care (Expand Search)
image design » images designed (Expand Search), simple design (Expand Search), space design (Expand Search)
data phase » late phase (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
Iteration curve of the optimization process.
Published 2025“…The load-bearing mechanism of the proposed steel platform was analyzed theoretically, and finite element analysis (FEA) was employed to evaluate the stresses and deflections of key members. A particle swarm optimization (PSO) algorithm was integrated with the FEA model to optimize the cross-sectional dimensions of the primary beams, secondary beams, and foundation boxes, achieving a balance between load-bearing capacity and cost efficiency. …”
-
15
Sample image for illustration.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
16
Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning
Published 2021“…Several morphologic and texture features at a single-cell level have been extracted from the quantitative phase images. In addition, we compared four common machine learning algorithms, including naive Bayes, decision tree, K-nearest neighbors, support vector machine (SVM), and fully connected network. …”
-
17
Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning
Published 2021“…Several morphologic and texture features at a single-cell level have been extracted from the quantitative phase images. In addition, we compared four common machine learning algorithms, including naive Bayes, decision tree, K-nearest neighbors, support vector machine (SVM), and fully connected network. …”
-
18
Quadratic polynomial in 2D image plane.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
19
Data Sheet 1_TBESO-BP: an improved regression model for predicting subclinical mastitis.pdf
Published 2025“…The model is based on TBESO (Multi-strategy Boosted Snake Optimizer) and utilizes monthly Dairy Herd Improvement (DHI) data to forecast the status of subclinical mastitis in cows.…”
-
20
Comparison analysis of computation time.
Published 2024“…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”