Showing 121 - 140 results of 183 for search '(( primary data process optimization algorithm ) OR ( binary a wolf optimization algorithm ))', query time: 1.01s Refine Results
  1. 121

    Trace, Machine Learning of Signal Images for Trace-Sensitive Mass Spectrometry: A Case Study from Single-Cell Metabolomics by Zhichao Liu (191718)

    Published 2019
    “…However, extraction of trace-abundance signals from complex data sets (<i>m</i>/<i>z</i> value, separation time, signal abundance) that result from ultrasensitive studies requires improved data processing algorithms. …”
  2. 122
  3. 123
  4. 124
  5. 125

    Supporting data for “The role of forest composition heterogeneity on temperate ecosystem carbon dynamic under climate change" by Ziyu Lin (9151064)

    Published 2025
    “…The process includes (1) harmonizing Landsat 5, 7, 8, and Sentinel-2 data using the HLS algorithm, and (2) filling temporal gaps with an optimized object-based STARFM fusion algorithm. …”
  6. 126
  7. 127
  8. 128

    Data used to drive the Double Layer Carbon Model in the Qinling Mountains. by Huiwen Li (17705280)

    Published 2024
    “…It also incorporates climate change responses, adjust decomposition rates based on climate and environmental changes, and lead to robust estimates under different climatic scenarios. The simulation process of the DLCM involves initializing SOC stocks with spatially detailed baseline data, adding organic matter inputs based on vegetation production, and simulating microbial decomposition while adjusting for climate variables such as temperature and soil moisture. …”
  9. 129
  10. 130

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf by Muhammad Awais (263096)

    Published 2024
    “…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
  11. 131
  12. 132

    SPAM-XAI confusion matrix. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  13. 133

    Illustration of MLP. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  14. 134

    Dataset detail division. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  15. 135

    Software defects types. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  16. 136

    SMOTE representation. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  17. 137

    Demonstration confusion matrix. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  18. 138

    Analysis PC2 AU-ROC curve. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  19. 139

    PROMISE defects prediction attribute aspects. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  20. 140

    Internal architecture of the SPAM-XAI model. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”