يعرض 121 - 135 نتائج من 135 نتيجة بحث عن '(( primary data process optimization algorithm ) OR ( binary b doses optimization algorithm ))', وقت الاستعلام: 0.29s تنقيح النتائج
  1. 121
  2. 122
  3. 123
  4. 124

    IUTF Dataset(Enhanced): Enabling Cross-Border Resource for Analysing the Impact of Rainfall on Urban Transportation Systems حسب Xuhui Lin (19505503)

    منشور في 2025
    "…</p><p dir="ltr"><b>Quality Assurance</b>: Comprehensive technical validation demonstrates the dataset's integrity, sensitivity to rainfall impacts, and capability to reveal complex traffic-weather interaction patterns.</p><h2>Data Structure</h2><p dir="ltr">The dataset is organized into four primary components:</p><ol><li><b>Road Network Data</b>: Topological representations including spatial geometry, functional classification, and connectivity information</li><li><b>Traffic Sensor Data</b>: Sensor metadata, locations, and measurements at both 5-minute and hourly resolutions</li><li><b>Precipitation Data</b>: Hourly meteorological information with spatial grid cell metadata</li><li><b>Derived Analytical Matrices</b>: Pre-computed structures for advanced spatial-temporal modelling and network analyses</li></ol><h2>File Formats</h2><ul><li><b>Tabular Data</b>: Apache Parquet format for optimal compression and fast query performance</li><li><b>Numerical Matrices</b>: NumPy NPZ format for efficient scientific computing</li><li><b>Total Size</b>: Approximately 2 GB uncompressed</li></ul><h2>Applications</h2><p dir="ltr">The IUTF dataset enables diverse analytical applications including:</p><ul><li><b>Traffic Flow Prediction</b>: Developing weather-aware traffic forecasting models</li><li><b>Infrastructure Planning</b>: Identifying vulnerable network components and prioritizing investments</li><li><b>Resilience Assessment</b>: Quantifying system recovery curves, robustness metrics, and adaptive capacity</li><li><b>Climate Adaptation</b>: Supporting evidence-based transportation planning under changing precipitation patterns</li><li><b>Emergency Management</b>: Improving response strategies for weather-related traffic disruptions</li></ul><h2>Methodology</h2><p dir="ltr">The dataset creation involved three main stages:</p><ol><li><b>Data Collection</b>: Sourcing traffic data from UTD19, road networks from OpenStreetMap, and precipitation data from ERA5 reanalysis</li><li><b>Spatio-Temporal Harmonization</b>: Comprehensive integration using novel algorithms for spatial alignment and temporal synchronization</li><li><b>Quality Assurance</b>: Rigorous validation and technical verification across all cities and data components</li></ol><h2>Code Availability</h2><p dir="ltr">Processing code is available at: https://github.com/viviRG2024/IUTDF_processing</p>…"
  5. 125
  6. 126

    Big Data Model Building Using Dimension Reduction and Sample Selection حسب Lih-Yuan Deng (17081779)

    منشور في 2023
    "…Furthermore, such subdata cannot be useful to build alternative models because it is not an appropriate representative sample of the full data. In this article, we propose a novel algorithm for better model building and prediction via a process of selecting a “good” training sample. …"
  7. 127

    Data_Sheet_1_Metagenomic Geolocation Prediction Using an Adaptive Ensemble Classifier.PDF حسب Samuel Anyaso-Samuel (10671576)

    منشور في 2021
    "…Also, we implemented class weighting and an optimal oversampling technique to overcome the class imbalance in the primary data. …"
  8. 128

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows حسب Pierre-Alexis DELAROCHE (22092572)

    منشور في 2025
    "…Experimental Methodology Framework Local Processing Pipeline Architecture Data Flow: Storage I/O → Memory Buffer → CPU/GPU Processing → Cache Coherency → Storage I/O ├── Input Vector: mmap() system call for zero-copy file access ├── Processing Engine: OpenMP parallelization with NUMA-aware thread affinity ├── Memory Management: Custom allocator with hugepage backing └── Output Vector: Direct I/O bypassing kernel page cache Cloud Processing Pipeline Architecture Data Flow: Local Storage → Network Stack → TLS Tunnel → CDN Edge → Origin Server → Processing Grid → Response Pipeline ├── Upload Phase: TCP window scaling with congestion control algorithms ├── Network Layer: Application-layer protocol with adaptive bitrate streaming ├── Server-side Processing: Containerized microservices on Kubernetes orchestration ├── Load Balancing: Consistent hashing with geographic affinity routing └── Download Phase: HTTP/2 multiplexing with server push optimization Dataset Schema and Semantic Structure Primary Data Vectors Field Data Type Semantic Meaning Measurement Unit test_type Categorical Processing paradigm identifier {local_processing, cloud_processing} photo_count Integer Cardinality of input asset vector Count avg_file_size_mb Float64 Mean per-asset storage footprint Mebibytes (2^20 bytes) total_volume_gb Float64 Aggregate data corpus size Gigabytes (10^9 bytes) processing_time_sec Integer Wall-clock execution duration Seconds (SI base unit) cpu_usage_watts Float64 Thermal design power consumption Watts (Joules/second) ram_usage_mb Integer Peak resident set size Mebibytes network_upload_mb Float64 Egress bandwidth utilization Mebibytes energy_consumption_kwh Float64 Cumulative energy expenditure Kilowatt-hours co2_equivalent_g Float64 Carbon footprint estimation Grams CO₂e test_date ISO8601 Temporal execution marker RFC 3339 format hardware_config String Node topology identifier Alphanumeric encoding Statistical Distribution Characteristics The dataset exhibits non-parametric distribution patterns with significant heteroscedasticity across computational load vectors. …"
  9. 129
  10. 130
  11. 131
  12. 132

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles حسب Soham Savarkar (21811825)

    منشور في 2025
    "…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"
  13. 133

    Supplementary file 1_OncoPSM: an interactive tool for cost-effectiveness analysis using partitioned survival models in oncology trial.xlsx حسب Xulong Qiu (22123102)

    منشور في 2025
    "…</p>Methods<p>We extracted data from Kaplan-Meier (KM) curves, reconstructed individual patient data (IPD) using an iterative KM algorithm, and fitted parametric survival functions to the IPD data. …"
  14. 134

    DATASET AI حسب Elena Stamate (18836305)

    منشور في 2025
    "…Performance metrics include accuracy, precision, recall, F1-score, and Matthews Correlation Coefficient (MCC).</p><p dir="ltr">All data have been de-identified and processed in accordance with institutional ethical standards.…"
  15. 135

    Dataset: Spatial Variability and Uncertainty of Soil Nitrogen across the Conterminous United States at Different Depths حسب Elizabeth Smith (12273647)

    منشور في 2022
    "…We used a random forest-regression kriging algorithm to predict soil N concentrations and associated uncertainty across six soil depths (0-5, 5-15, 15-30, 30-60, 60-100, 100-200 cm) at 5 km spatial grids. …"