Showing 121 - 140 results of 160 for search '(( primary data process optimization algorithm ) OR ( binary cases based optimization algorithm ))*', query time: 0.63s Refine Results
  1. 121

    SPAM-XAI confusion matrix using PC1 dataset. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  2. 122

    Analysis PC1 AU-ROC curve. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  3. 123

    Proposed method approach. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  4. 124

    LSTM model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  5. 125

    Descriptive statistics. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  6. 126

    CNN-LSTM Model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  7. 127

    MLP Model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  8. 128

    RNN Model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  9. 129

    CNN Model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  10. 130

    Bi-directional LSTM Model performance. by Muhammad Usman Tariq (11022141)

    Published 2024
    “…These models were calibrated and evaluated using a comprehensive dataset that includes confirmed case counts, demographic data, and relevant socioeconomic factors. To enhance the performance of these models, Bayesian optimization techniques were employed. …”
  11. 131

    Early Parkinson’s disease identification via hybrid feature selection from multi-feature subsets and optimized CatBoost with SMOTE by Subhashree Mohapatra (17387852)

    Published 2025
    “…The proposed framework leverages a strong categorical boosting (CatBoost) algorithm optimized using Grid Search Optimization (GSO). …”
  12. 132

    Minimal Dateset. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  13. 133

    Loss Function Comparison. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  14. 134

    Comparative Results of Different Models. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  15. 135

    Loss Function Comparison. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  16. 136

    Overall Framework of the PSO-KM Model. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  17. 137

    Overall Framework of the PSO-KM Model. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  18. 138
  19. 139
  20. 140

    Supplementary file 1_Development of a venous thromboembolism risk prediction model for patients with primary membranous nephropathy based on machine learning.docx by Lian Li (49049)

    Published 2025
    “…Objective<p>This study utilizes real-world data from primary membranous nephropathy (PMN) patients to preliminarily develop a venous thromboembolism (VTE) risk prediction model with machine learning. …”