Showing 141 - 160 results of 183 for search '(( primary data processing optimization algorithm ) OR ( binary a wolf optimization algorithm ))', query time: 0.61s Refine Results
  1. 141
  2. 142

    Minimal Dateset. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  3. 143

    Loss Function Comparison. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  4. 144

    Comparative Results of Different Models. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  5. 145

    Loss Function Comparison. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  6. 146

    Overall Framework of the PSO-KM Model. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  7. 147

    Overall Framework of the PSO-KM Model. by Hongwei Yue (574068)

    Published 2025
    “…To address this issue, this paper proposes a novel hybrid algorithm—PSO-KM—that integrates Particle Swarm Optimization with K-means to improve both accuracy and computational efficiency in clustering resident profile data. …”
  8. 148
  9. 149
  10. 150

    Supplementary file 1_Development of a venous thromboembolism risk prediction model for patients with primary membranous nephropathy based on machine learning.docx by Lian Li (49049)

    Published 2025
    “…Objective<p>This study utilizes real-world data from primary membranous nephropathy (PMN) patients to preliminarily develop a venous thromboembolism (VTE) risk prediction model with machine learning. …”
  11. 151
  12. 152
  13. 153

    SPAM-XAI confusion matrix. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  14. 154

    Illustration of MLP. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  15. 155

    Dataset detail division. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  16. 156

    Software defects types. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  17. 157

    SMOTE representation. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  18. 158

    Demonstration confusion matrix. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  19. 159

    Analysis PC2 AU-ROC curve. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”
  20. 160

    PROMISE defects prediction attribute aspects. by Mohd Mustaqeem (19106494)

    Published 2024
    “…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …”