بدائل البحث:
resource optimization » resource utilization (توسيع البحث), resource utilisation (توسيع البحث), resource limitations (توسيع البحث)
driven optimization » design optimization (توسيع البحث), guided optimization (توسيع البحث), dose optimization (توسيع البحث)
data resource » data resources (توسيع البحث), data source (توسيع البحث), water resource (توسيع البحث)
primary data » primary care (توسيع البحث)
binary wave » binary image (توسيع البحث)
resource optimization » resource utilization (توسيع البحث), resource utilisation (توسيع البحث), resource limitations (توسيع البحث)
driven optimization » design optimization (توسيع البحث), guided optimization (توسيع البحث), dose optimization (توسيع البحث)
data resource » data resources (توسيع البحث), data source (توسيع البحث), water resource (توسيع البحث)
primary data » primary care (توسيع البحث)
binary wave » binary image (توسيع البحث)
-
21
-
22
-
23
CIAHS-Data.xls
منشور في 2025"…This method identifies inherent natural grouping points within the data through the Jenks optimization algorithm, maximizing between-class differences while minimizing within-class differences37. …"
-
24
-
25
-
26
-
27
-
28
Big Data Model Building Using Dimension Reduction and Sample Selection
منشور في 2023"…The primary purpose of training data is to represent the full data. …"
-
29
Table_1_Machine learning models for assessing risk factors affecting health care costs: 12-month exercise-based cardiac rehabilitation.DOCX
منشور في 2024"…The ML tools may help decision-making when planning the optimal allocation of health care resources.</p>…"
-
30
DATASET AI
منشور في 2025"…</p><p dir="ltr">The primary aim of this dataset is to enable the development and validation of machine learning models for:</p><ul><li>Early identification of STEMI patients at high risk of developing cardiogenic shock;</li><li>Clinical triage optimization and prioritization for urgent angiography;</li><li>Supporting time-sensitive decision-making in resource-limited or overcrowded emergency settings.…"
-
31
Image 1_Development of machine learning predictive model for type 2 diabetic retinopathy using the triglyceride-glucose index explained by SHAP method.png
منشور في 2025"…To our knowledge, this is the first machine learning-based DR prediction model integrating the triglyceride-glucose index (TyG) as a core predictor, overcoming limitations of insulin resistance (IR) assessment in resource-limited settings. TyG provides a cost-effective alternative to conventional IR biomarkers (e.g., HOMA-IR), enabling practical DR risk stratification in primary care.…"
-
32
Image 2_Development of machine learning predictive model for type 2 diabetic retinopathy using the triglyceride-glucose index explained by SHAP method.png
منشور في 2025"…To our knowledge, this is the first machine learning-based DR prediction model integrating the triglyceride-glucose index (TyG) as a core predictor, overcoming limitations of insulin resistance (IR) assessment in resource-limited settings. TyG provides a cost-effective alternative to conventional IR biomarkers (e.g., HOMA-IR), enabling practical DR risk stratification in primary care.…"
-
33
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
منشور في 2025"…Cloud Workflows}, author={AlbumForge Research Team}, year={2025}, publisher={Figshare}, doi={10.6084/m9.figshare.XXXXXXX}, url={https://figshare.com/articles/dataset/XXXXXXX} } Contributing and Data Governance Issue Reporting Technical issues, data quality concerns, or methodological questions should be reported via GitHub Issues with the following template: **Issue Type**: [Bug Report / Data Quality / Methodology Question] **Hardware Configuration**: [Specify if applicable] **Dataset Version**: [e.g., v1.0.0] **Description**: [Detailed description of the issue] **Reproducibility**: [Steps to reproduce if applicable] **Expected Behavior**: [What should happen] **Actual Behavior**: [What actually happens] Data Update Protocol Dataset versioning follows semantic versioning (SemVer) principles: Major version (X.0.0): Incompatible schema changes Minor version (0.X.0): Backward-compatible feature additions Patch version (0.0.X): Backward-compatible bug fixes Technical Support and Community For advanced technical discussions, algorithmic improvements, or collaborative research opportunities, please contact: Primary Maintainer: research@albumforge.com Technical Issues: github.com/albumforge/ecological-benchmark/issues Methodology Discussions: [Academic collaboration portal] Industry Partnerships: partnerships@albumforge.com Acknowledgments: This research was conducted using computational resources provided by AlbumForge (https://albumforge.com) under the Green Computing Initiative. …"
-
34
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…</p><p dir="ltr">This curated dataset addresses several limitations of existing toxicological datasets by enhancing feature diversity, standardization, and data quality control. It is publicly available via the Supplementary Information section and aims to serve as a benchmark resource for researchers developing predictive nanotoxicology models.…"