بدائل البحث:
robust optimization » process optimization (توسيع البحث), robust estimation (توسيع البحث), joint optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
binary basic » binary mask (توسيع البحث)
basic model » based model (توسيع البحث), base model (توسيع البحث)
robust optimization » process optimization (توسيع البحث), robust estimation (توسيع البحث), joint optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
binary basic » binary mask (توسيع البحث)
basic model » based model (توسيع البحث), base model (توسيع البحث)
-
61
Illustration of MLP.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
62
Dataset detail division.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
63
Software defects types.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
64
SMOTE representation.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
65
Demonstration confusion matrix.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
66
Analysis PC2 AU-ROC curve.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
67
PROMISE defects prediction attribute aspects.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
68
Internal architecture of the SPAM-XAI model.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
69
SPAM-XAI compared with previous models.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
70
SPAM-XAI confusion matrix using PC2 dataset.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
71
Overview of SPAM-XAI model complete architecture.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
72
SPAM-XAI using the PC1 dataset.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
73
SPAM-XAI using the CM1 dataset.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
74
Analysis of CM1 ROC curve.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
75
SPAM-XAI confusion matrix using PC1 dataset.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
76
Analysis PC1 AU-ROC curve.
منشور في 2024"…We propose SPAM-XAI, a hybrid model integrating novel sampling, feature selection, and eXplainable-AI (XAI) algorithms to address these challenges. The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
77
Data_Sheet_1_Metagenomic Geolocation Prediction Using an Adaptive Ensemble Classifier.PDF
منشور في 2021"…Also, we implemented class weighting and an optimal oversampling technique to overcome the class imbalance in the primary data. …"
-
78
-
79
-
80
Table_4_High-Order Correlation Integration for Single-Cell or Bulk RNA-seq Data Analysis.XLSX
منشور في 2019"…On the other hand, the PFA can identify intrinsic sample patterns efficiently from different input matrices by optimally adjusting the signal effects. To validate the effectiveness of our new method, we firstly applied HCI on four single-cell RNA-seq datasets to distinguish the cell types, and we found that HCI is capable of identifying the prior-known cell types of single-cell samples from scRNA-seq data with higher accuracy and robustness than other methods under different conditions. …"