Search alternatives:
function optimization » reaction optimization (Expand Search), formulation optimization (Expand Search), generation optimization (Expand Search)
share optimization » swarm optimization (Expand Search), whale optimization (Expand Search), phase optimization (Expand Search)
based function » based functional (Expand Search), basis function (Expand Search), basis functions (Expand Search)
primary data » primary care (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
data share » data store (Expand Search), data space (Expand Search), data sharing (Expand Search)
function optimization » reaction optimization (Expand Search), formulation optimization (Expand Search), generation optimization (Expand Search)
share optimization » swarm optimization (Expand Search), whale optimization (Expand Search), phase optimization (Expand Search)
based function » based functional (Expand Search), basis function (Expand Search), basis functions (Expand Search)
primary data » primary care (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
data share » data store (Expand Search), data space (Expand Search), data sharing (Expand Search)
-
41
Collaborative hunting behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
42
Friedman average rank sum test results.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
43
IRBMO vs. variant comparison adaptation data.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
44
ECE6379_PSOM.zip
Published 2021“…Optimization algorithms that are commonly used to solve these problems will also be covered including linear programming, mixed-integer linear programming, Lagrange relaxation, dynamic programming, branch and bound, and duality theory.…”
-
45
A portfolio selection model based on the knapsack problem under uncertainty
Published 2019“…<div><p>One of the primary concerns in investment planning is to determine the number of shares for asset with relatively high net value of share such as Berkshire Hathaway on Stock market. …”
-
46
-
47
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…”
-
48
-
49
-
50
-
51
-
52
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
Published 2022“…The objective of this research was to employ efficient biomarkers for the diagnostic analysis and classification of AD based on combining structural MRI (sMRI) and resting-state functional MRI (rs-fMRI). …”
-
53
Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat.
Published 2025“…Multiple SVM models were trained and evaluated, including configurations with linear and RBF (Radial Basis Function) kernels. </p><p dir="ltr">Additionally, an exhaustive hyperparameter search was performed using GridSearchCV to optimize the C, gamma, and kernel parameters (testing 'linear,' 'rbf,' 'poly,' and 'sigmoid'), aiming to find the highest-performing configuration. …”
-
54
-
55
Data Sheet 1_Integrative single-cell and exosomal multi-omics uncovers SCNN1A and EFNA1 as non-invasive biomarkers and drivers of ovarian cancer metastasis.zip
Published 2025“…We then applied ten machine learning algorithm to exosomal transcriptomic data to evaluate diagnostic performance and identify the optimal classifier. …”
-
56
Models and Dataset
Published 2025“…</p><p dir="ltr"><br></p><p dir="ltr"><b>RAO (Rao Optimization Algorithm):</b><br>RAO is a parameter-less optimization algorithm that updates solutions based on simple arithmetic operations involving the best and worst individuals in the population. …”
-
57
Table_1_iRNA5hmC: The First Predictor to Identify RNA 5-Hydroxymethylcytosine Modifications Using Machine Learning.docx
Published 2020“…In this predictor, we introduced a sequence-based feature algorithm consisting of two feature representations, (1) k-mer spectrum and (2) positional nucleotide binary vector, to capture the sequential characteristics of 5hmC sites. …”
-
58
Supplementary Material 8
Published 2025“…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…”
-
59
Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction
Published 2020“…We emphasize that the proposed AL algorithm can be easily generalized to search for any binary metal oxide structure with a defined stoichiometry.…”
-
60
Table_1_A Phenotyping of Diastolic Function by Machine Learning Improves Prediction of Clinical Outcomes in Heart Failure.DOCX
Published 2021“…</p><p>Conclusion: Machine learning can identify patterns of diastolic function that better stratify the risk for decompensation than the current consensus recommendations in HF. Integrating this data-driven phenotyping may help in refining prognostication and optimizing treatment.…”