بدائل البحث:
source optimization » resource optimization (توسيع البحث), surface optimization (توسيع البحث), source utilization (توسيع البحث)
scale optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), phase optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
data source » data sources (توسيع البحث)
binary time » binary image (توسيع البحث)
time scale » time scales (توسيع البحث)
source optimization » resource optimization (توسيع البحث), surface optimization (توسيع البحث), source utilization (توسيع البحث)
scale optimization » whale optimization (توسيع البحث), swarm optimization (توسيع البحث), phase optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
data source » data sources (توسيع البحث)
binary time » binary image (توسيع البحث)
time scale » time scales (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
Machine learning deployment strategies and schematic illustration of the proposed generative adversarial algorithm for domain adaptation.
منشور في 2022"…<b>(C)</b> Schematic of the proposed algorithm. a) Real data from a source domain is translated by the generator to resemble data from a specified target domain while maintaining underlying semantic qualities of the input image. b) Translated data is reconstructed by the generator to resemble data from the source domain to maintain domain-agnostic image characteristics with a semantic consistency constraint ensuring that reconstructed images maintain the semantic characteristics of the source data. c) The discriminator aims to distinguish between real and synthetic images and identify the domain of input images to constrain the generator to produce realistic-looking synthetic images from a specified domain. d) A target discriminator is fine-tuned on synthetic images to better identify opacity in the target domain.…"
-
13
Comparison analysis of computation time.
منشور في 2024"…Furthermore, the matching score for the test image is 0.975. The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …"
-
14
Dataset of networks used in assessing the Troika algorithm for clique partitioning and community detection
منشور في 2025"…</p><p dir="ltr"><br></p><p dir="ltr">For more information about the data, one may refer to the article below:</p><p dir="ltr">Aref S, Ng B (2025) Troika algorithm: Approximate optimization for accurate clique partitioning and clustering of weighted networks. …"
-
15
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
منشور في 2019"…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …"
-
16
-
17
Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP
منشور في 2022"…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …"
-
18
ECE6379_PSOM.zip
منشور في 2021"…Optimization algorithms that are commonly used to solve these problems will also be covered including linear programming, mixed-integer linear programming, Lagrange relaxation, dynamic programming, branch and bound, and duality theory.…"
-
19
Results of Comprehensive weighting.
منشور في 2025"…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …"
-
20
The prediction error of each model.
منشور في 2025"…The model is developed and validated using data from 159 debris flow-prone gullies, integrating deep convolutional, recurrent, and attention-based architectures, with hyperparameters autonomously optimized by IKOA. …"