Search alternatives:
streams optimization » stress optimization (Expand Search), surface optimization (Expand Search), step optimization (Expand Search)
codes optimization » codon optimization (Expand Search), model optimization (Expand Search), convex optimization (Expand Search)
primary data » primary care (Expand Search)
data codes » data code (Expand Search), data models (Expand Search), data model (Expand Search)
streams optimization » stress optimization (Expand Search), surface optimization (Expand Search), step optimization (Expand Search)
codes optimization » codon optimization (Expand Search), model optimization (Expand Search), convex optimization (Expand Search)
primary data » primary care (Expand Search)
data codes » data code (Expand Search), data models (Expand Search), data model (Expand Search)
-
1
-
2
-
3
-
4
-
5
Table_1_Screening of Long Non-coding RNAs Biomarkers for the Diagnosis of Tuberculosis and Preliminary Construction of a Clinical Diagnosis Model.docx
Published 2022“…Background<p>Pathogenic testing for tuberculosis (TB) is not yet sufficient for early and differential clinical diagnosis; thus, we investigated the potential of screening long non-coding RNAs (lncRNAs) from human hosts and using machine learning (ML) algorithms combined with electronic health record (EHR) metrics to construct a diagnostic model.…”
-
6
-
7
-
8
-
9
-
10
ECE6379_PSOM.zip
Published 2021“…Optimization algorithms that are commonly used to solve these problems will also be covered including linear programming, mixed-integer linear programming, Lagrange relaxation, dynamic programming, branch and bound, and duality theory.…”
-
11
-
12
IUTF Dataset(Enhanced): Enabling Cross-Border Resource for Analysing the Impact of Rainfall on Urban Transportation Systems
Published 2025“…</p><p dir="ltr"><b>Quality Assurance</b>: Comprehensive technical validation demonstrates the dataset's integrity, sensitivity to rainfall impacts, and capability to reveal complex traffic-weather interaction patterns.</p><h2>Data Structure</h2><p dir="ltr">The dataset is organized into four primary components:</p><ol><li><b>Road Network Data</b>: Topological representations including spatial geometry, functional classification, and connectivity information</li><li><b>Traffic Sensor Data</b>: Sensor metadata, locations, and measurements at both 5-minute and hourly resolutions</li><li><b>Precipitation Data</b>: Hourly meteorological information with spatial grid cell metadata</li><li><b>Derived Analytical Matrices</b>: Pre-computed structures for advanced spatial-temporal modelling and network analyses</li></ol><h2>File Formats</h2><ul><li><b>Tabular Data</b>: Apache Parquet format for optimal compression and fast query performance</li><li><b>Numerical Matrices</b>: NumPy NPZ format for efficient scientific computing</li><li><b>Total Size</b>: Approximately 2 GB uncompressed</li></ul><h2>Applications</h2><p dir="ltr">The IUTF dataset enables diverse analytical applications including:</p><ul><li><b>Traffic Flow Prediction</b>: Developing weather-aware traffic forecasting models</li><li><b>Infrastructure Planning</b>: Identifying vulnerable network components and prioritizing investments</li><li><b>Resilience Assessment</b>: Quantifying system recovery curves, robustness metrics, and adaptive capacity</li><li><b>Climate Adaptation</b>: Supporting evidence-based transportation planning under changing precipitation patterns</li><li><b>Emergency Management</b>: Improving response strategies for weather-related traffic disruptions</li></ul><h2>Methodology</h2><p dir="ltr">The dataset creation involved three main stages:</p><ol><li><b>Data Collection</b>: Sourcing traffic data from UTD19, road networks from OpenStreetMap, and precipitation data from ERA5 reanalysis</li><li><b>Spatio-Temporal Harmonization</b>: Comprehensive integration using novel algorithms for spatial alignment and temporal synchronization</li><li><b>Quality Assurance</b>: Rigorous validation and technical verification across all cities and data components</li></ol><h2>Code Availability</h2><p dir="ltr">Processing code is available at: https://github.com/viviRG2024/IUTDF_processing</p>…”
-
13
-
14
CSPP instance
Published 2025“…</b></p><p dir="ltr">Its primary function is to create structured datasets that simulate container terminal operations, which can then be used for developing, testing, and benchmarking optimization algorithms (e.g., for yard stacking strategies, vessel stowage planning).…”
-
15
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
Published 2025“…Experimental Methodology Framework Local Processing Pipeline Architecture Data Flow: Storage I/O → Memory Buffer → CPU/GPU Processing → Cache Coherency → Storage I/O ├── Input Vector: mmap() system call for zero-copy file access ├── Processing Engine: OpenMP parallelization with NUMA-aware thread affinity ├── Memory Management: Custom allocator with hugepage backing └── Output Vector: Direct I/O bypassing kernel page cache Cloud Processing Pipeline Architecture Data Flow: Local Storage → Network Stack → TLS Tunnel → CDN Edge → Origin Server → Processing Grid → Response Pipeline ├── Upload Phase: TCP window scaling with congestion control algorithms ├── Network Layer: Application-layer protocol with adaptive bitrate streaming ├── Server-side Processing: Containerized microservices on Kubernetes orchestration ├── Load Balancing: Consistent hashing with geographic affinity routing └── Download Phase: HTTP/2 multiplexing with server push optimization Dataset Schema and Semantic Structure Primary Data Vectors Field Data Type Semantic Meaning Measurement Unit test_type Categorical Processing paradigm identifier {local_processing, cloud_processing} photo_count Integer Cardinality of input asset vector Count avg_file_size_mb Float64 Mean per-asset storage footprint Mebibytes (2^20 bytes) total_volume_gb Float64 Aggregate data corpus size Gigabytes (10^9 bytes) processing_time_sec Integer Wall-clock execution duration Seconds (SI base unit) cpu_usage_watts Float64 Thermal design power consumption Watts (Joules/second) ram_usage_mb Integer Peak resident set size Mebibytes network_upload_mb Float64 Egress bandwidth utilization Mebibytes energy_consumption_kwh Float64 Cumulative energy expenditure Kilowatt-hours co2_equivalent_g Float64 Carbon footprint estimation Grams CO₂e test_date ISO8601 Temporal execution marker RFC 3339 format hardware_config String Node topology identifier Alphanumeric encoding Statistical Distribution Characteristics The dataset exhibits non-parametric distribution patterns with significant heteroscedasticity across computational load vectors. …”
-
16
Supplementary file 1_A real-world disproportionality analysis of FDA adverse event reporting system (FAERS) events for lecanemab.docx
Published 2025“…Using the Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-item Gamma Poisson Shrinker (MGPS) algorithms, we conducted a comprehensive analysis of lecanemab-related AEs, restricting the analysis to AEs with the role code of primary suspect (PS).…”