Search alternatives:
process optimization » model optimization (Expand Search)
based process » based processes (Expand Search), based probes (Expand Search), based proteins (Expand Search)
primary data » primary care (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
data swarm » data share (Expand Search)
process optimization » model optimization (Expand Search)
based process » based processes (Expand Search), based probes (Expand Search), based proteins (Expand Search)
primary data » primary care (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
data swarm » data share (Expand Search)
-
21
-
22
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
23
Wilcoxon’s rank sum test results.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
24
Flowchart of MSHHOTSA.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
25
Tension/compression spring design problem.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
26
Speed reducer design problem.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
27
Flowchart of TSA [43].
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
28
Pressure vessel design problem.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
29
Gear train design problem.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
30
The proportion integral derivative controller.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
31
Random parameter factor.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
32
Eight commonly used benchmark functions.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
33
Hyperbolic tangent row domain.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
34
Parameter settings.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
35
Nonlinear fast convergence factor.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
36
CEC2019 benchmark functions.
Published 2023“…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
-
37
Iteration curve of the optimization process.
Published 2025“…The load-bearing mechanism of the proposed steel platform was analyzed theoretically, and finite element analysis (FEA) was employed to evaluate the stresses and deflections of key members. A particle swarm optimization (PSO) algorithm was integrated with the FEA model to optimize the cross-sectional dimensions of the primary beams, secondary beams, and foundation boxes, achieving a balance between load-bearing capacity and cost efficiency. …”
-
38
-
39
-
40