بدائل البحث:
robust optimization » process optimization (توسيع البحث), robust estimation (توسيع البحث), joint optimization (توسيع البحث)
using optimization » joint optimization (توسيع البحث), design optimization (توسيع البحث), step optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a robust » _ robust (توسيع البحث)
robust optimization » process optimization (توسيع البحث), robust estimation (توسيع البحث), joint optimization (توسيع البحث)
using optimization » joint optimization (توسيع البحث), design optimization (توسيع البحث), step optimization (توسيع البحث)
primary data » primary care (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a robust » _ robust (توسيع البحث)
-
161
Multinomial logistic classifier [25].
منشور في 2023"…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …"
-
162
Flowchart of random forest classifier [30].
منشور في 2023"…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …"
-
163
Research objectives achievement.
منشور في 2023"…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …"
-
164
Implementation view of the research framework.
منشور في 2023"…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …"
-
165
S1 Dataset -
منشور في 2023"…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …"
-
166
LibSVM classifier [14].
منشور في 2023"…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …"
-
167
Parameter configuration of ML classifiers.
منشور في 2023"…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …"
-
168
Naïve bayes classifier [23].
منشور في 2023"…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …"
-
169
KNN architecture [29].
منشور في 2023"…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …"
-
170
Performance metrics for BrC.
منشور في 2024"…After the image has been pre-processed, it is segmented using the Thresholding Level set approach. Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …"
-
171
Proposed CVAE model.
منشور في 2024"…After the image has been pre-processed, it is segmented using the Thresholding Level set approach. Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …"
-
172
Proposed methodology.
منشور في 2024"…After the image has been pre-processed, it is segmented using the Thresholding Level set approach. Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …"
-
173
Loss vs. Epoch.
منشور في 2024"…After the image has been pre-processed, it is segmented using the Thresholding Level set approach. Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …"
-
174
Sample images from the BreakHis dataset.
منشور في 2024"…After the image has been pre-processed, it is segmented using the Thresholding Level set approach. Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …"
-
175
Accuracy vs. Epoch.
منشور في 2024"…After the image has been pre-processed, it is segmented using the Thresholding Level set approach. Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …"
-
176
Segmentation results of the proposed model.
منشور في 2024"…After the image has been pre-processed, it is segmented using the Thresholding Level set approach. Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …"
-
177
S1 Dataset -
منشور في 2024"…After the image has been pre-processed, it is segmented using the Thresholding Level set approach. Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …"
-
178
CSCO’s flowchart.
منشور في 2024"…After the image has been pre-processed, it is segmented using the Thresholding Level set approach. Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …"
-
179
-
180