Showing 1 - 18 results of 18 for search '(( primary data wolf optimization algorithm ) OR ( binary based whole optimization algorithm ))', query time: 0.62s Refine Results
  1. 1

    S1 Data - by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  2. 2

    Parameter settings for algorithms. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  3. 3

    Parameter settings for algorithms. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  4. 4

    Average runtime of different algorithms. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  5. 5

    Average runtime of different algorithms. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  6. 6

    Flowchart of GJO-GWO algorithm. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  7. 7

    Detailed information of benchmark functions. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  8. 8

    Evaluation metrics of the models’ performance. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  9. 9

    Detailed information of datasets. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  10. 10

    Friedman test results. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  11. 11

    Average number of selected features. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  12. 12

    Wilcoxon rank sum test results. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  13. 13

    Wilcoxon rank sum test results. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  14. 14

    Average number of selected features. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  15. 15
  16. 16

    <i>hi</i>PRS algorithm process flow. by Michela C. Massi (14599915)

    Published 2023
    “…The sequences can include from a single SNP-allele pair up to a maximum number of pairs defined by the user (<i>l</i><sub>max</sub>). <b>(C)</b> The whole training data is then scanned, searching for these sequences and deriving a re-encoded dataset where interaction terms are binary features (i.e., 1 if sequence <i>i</i> is observed in <i>j</i>-th patient genotype, 0 otherwise). …”
  17. 17
  18. 18

    Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield... by Uttam Khatri (12689072)

    Published 2022
    “…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”