يعرض 1 - 20 نتائج من 21 نتيجة بحث عن '(( primary data wolf optimization algorithm ) OR ( binary time after optimization algorithm ))', وقت الاستعلام: 0.45s تنقيح النتائج
  1. 1
  2. 2

    S1 Data - حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  3. 3

    Parameter settings for algorithms. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  4. 4

    Parameter settings for algorithms. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  5. 5

    Average runtime of different algorithms. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  6. 6

    Average runtime of different algorithms. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  7. 7

    Flowchart of GJO-GWO algorithm. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  8. 8

    Detailed information of benchmark functions. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  9. 9

    Evaluation metrics of the models’ performance. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  10. 10

    Detailed information of datasets. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  11. 11

    Friedman test results. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  12. 12

    Average number of selected features. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  13. 13

    Wilcoxon rank sum test results. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  14. 14

    Wilcoxon rank sum test results. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  15. 15

    Average number of selected features. حسب Guangwei Liu (181992)

    منشور في 2024
    "…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …"
  16. 16
  17. 17
  18. 18
  19. 19

    Table_1_Machine Learning Techniques in Blood Pressure Management During the Acute Phase of Ischemic Stroke.DOCX حسب Orit Mazza (12081914)

    منشور في 2022
    "…Decision trees were constructed by a hierarchical binary recursive partitioning algorithm to predict the BP-lowering of 10–30% off the maximal value when antihypertensive treatment was given in patients with an extremely high BP (above 220/110 or 180/105 mmHg for patients receiving thrombolysis), according to the American Heart Association/American Stroke Association (AHA/ASA), the European Society of Cardiology, and the European Society of Hypertension (ESC/ESH) guidelines. …"
  20. 20

    PathOlOgics_RBCs Python Scripts.zip حسب Ahmed Elsafty (16943883)

    منشور في 2023
    "…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …"