Search alternatives:
phase optimization » whale optimization (Expand Search), based optimization (Expand Search), path optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
binary basic » binary mask (Expand Search)
primary i » primary _ (Expand Search), primary aim (Expand Search), primary pci (Expand Search)
i phase » _ phase (Expand Search), a phase (Expand Search), m phase (Expand Search)
phase optimization » whale optimization (Expand Search), based optimization (Expand Search), path optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
binary basic » binary mask (Expand Search)
primary i » primary _ (Expand Search), primary aim (Expand Search), primary pci (Expand Search)
i phase » _ phase (Expand Search), a phase (Expand Search), m phase (Expand Search)
-
1
-
2
Pseudocode of artificial dragonfly algorithm.
Published 2023“…The primary objective is to investigate the effectiveness and robustness of the ADA algorithm in expediting the training phase of the HNN to attain an optimized EB<i>k</i>SAT logic representation. …”
-
3
<i>MAPE performance of various</i> HNN-EB<i>k</i>SAT models.
Published 2023“…The primary objective is to investigate the effectiveness and robustness of the ADA algorithm in expediting the training phase of the HNN to attain an optimized EB<i>k</i>SAT logic representation. …”
-
4
G<i>m</i>R performance of various HNN-EB<i>k</i>SAT models.
Published 2023“…The primary objective is to investigate the effectiveness and robustness of the ADA algorithm in expediting the training phase of the HNN to attain an optimized EB<i>k</i>SAT logic representation. …”
-
5
The Hopfield artificial neural network algorithm.
Published 2023“…The primary objective is to investigate the effectiveness and robustness of the ADA algorithm in expediting the training phase of the HNN to attain an optimized EB<i>k</i>SAT logic representation. …”
-
6
-
7
RMSE performance of various HNN-EB<i>k</i>SAT models.
Published 2023“…The primary objective is to investigate the effectiveness and robustness of the ADA algorithm in expediting the training phase of the HNN to attain an optimized EB<i>k</i>SAT logic representation. …”
-
8
-
9
General procedural flow of clustering algorithm.
Published 2024“…AVOCA generates 45% less clusters when compared to Self-Adaptive Multi-Kernel Clustering for Urban VANETs (SAMNET), AVOCA generates 43% less clusters when compared to Intelligent Whale Optimization Algorithm (i-WOA) and AVOCA generates 38% less clusters when compared to Harris Hawks Optimization (HHO). …”
-
10
Optimal cluster head approach.
Published 2024“…AVOCA generates 45% less clusters when compared to Self-Adaptive Multi-Kernel Clustering for Urban VANETs (SAMNET), AVOCA generates 43% less clusters when compared to Intelligent Whale Optimization Algorithm (i-WOA) and AVOCA generates 38% less clusters when compared to Harris Hawks Optimization (HHO). …”
-
11
Optimal cluster formation approach.
Published 2024“…AVOCA generates 45% less clusters when compared to Self-Adaptive Multi-Kernel Clustering for Urban VANETs (SAMNET), AVOCA generates 43% less clusters when compared to Intelligent Whale Optimization Algorithm (i-WOA) and AVOCA generates 38% less clusters when compared to Harris Hawks Optimization (HHO). …”
-
12
-
13
Flow diagram of Wan Abdullah method for HNN.
Published 2023“…The primary objective is to investigate the effectiveness and robustness of the ADA algorithm in expediting the training phase of the HNN to attain an optimized EB<i>k</i>SAT logic representation. …”
-
14
Training error and accuracy for all HNN models.
Published 2023“…The primary objective is to investigate the effectiveness and robustness of the ADA algorithm in expediting the training phase of the HNN to attain an optimized EB<i>k</i>SAT logic representation. …”
-
15
-
16
-
17
-
18
-
19
-
20