Showing 1 - 20 results of 36 for search '(( primary image processing optimization algorithm ) OR ( binary _ whale optimization algorithm ))*', query time: 0.45s Refine Results
  1. 1

    Features selected by optimization algorithms. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  2. 2
  3. 3

    Hybrid feature selection algorithm of CSCO-ROA. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  4. 4

    Sample images from the BreakHis dataset. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

    Performance metrics for BrC. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  10. 10

    Proposed CVAE model. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  11. 11

    Proposed methodology. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  12. 12

    Loss vs. Epoch. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  13. 13

    Accuracy vs. Epoch. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  14. 14

    Segmentation results of the proposed model. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  15. 15

    S1 Dataset - by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  16. 16

    CSCO’s flowchart. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  17. 17

    Hyperparameters of the LSTM Model. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”
  18. 18

    The AD-PSO-Guided WOA LSTM framework. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”
  19. 19

    Prediction results of individual models. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …”
  20. 20