Showing 1 - 20 results of 34 for search '(( primary image processing optimization algorithm ) OR ( binary a driver optimization algorithm ))', query time: 0.63s Refine Results
  1. 1

    Features selected by optimization algorithms. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  2. 2
  3. 3

    Hybrid feature selection algorithm of CSCO-ROA. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  4. 4

    Sample images from the BreakHis dataset. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9

    Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP by Xiaoyuan Wang (492534)

    Published 2022
    “…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …”
  10. 10

    Performance metrics for BrC. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  11. 11

    Proposed CVAE model. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  12. 12

    Proposed methodology. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  13. 13

    Loss vs. Epoch. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  14. 14

    Accuracy vs. Epoch. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  15. 15

    Segmentation results of the proposed model. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  16. 16

    S1 Dataset - by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  17. 17

    CSCO’s flowchart. by Afnan M. Alhassan (18349378)

    Published 2024
    “…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
  18. 18
  19. 19
  20. 20