بدائل البحث:
process optimization » model optimization (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
primary role » primary care (توسيع البحث), primary goal (توسيع البحث)
wave process » same process (توسيع البحث), whole process (توسيع البحث), phase process (توسيع البحث)
role design » probe design (توسيع البحث), core design (توسيع البحث), home design (توسيع البحث)
binary wave » binary image (توسيع البحث)
process optimization » model optimization (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
primary role » primary care (توسيع البحث), primary goal (توسيع البحث)
wave process » same process (توسيع البحث), whole process (توسيع البحث), phase process (توسيع البحث)
role design » probe design (توسيع البحث), core design (توسيع البحث), home design (توسيع البحث)
binary wave » binary image (توسيع البحث)
-
1
-
2
-
3
MCLP_quantum_annealer_V0.5
منشور في 2025"…Theoretical and applied experiments are conducted using four solvers: QBSolv, D-Wave Hybrid binary quadratic model 2, D-Wave Advantage system 4.1, and Gurobi. …"
-
4
-
5
Extraction and expression of architectural color.
منشور في 2023"…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
-
6
Basic color value distribution map of the street.
منشور في 2023"…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
-
7
SegNet architecture.
منشور في 2023"…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
-
8
Overview of workflow.
منشور في 2023"…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
-
9
Descriptive statistics for the volunteers.
منشور في 2023"…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
-
10
Jiefang North Road Street.
منشور في 2023"…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
-
11
Colors with different number of clusters.
منشور في 2023"…We introduced the SegNet deep learning algorithm to semantically segment the street view images, extract the architectural elements and optimize the edges of the architecture. …"
-
12
Image1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
منشور في 2021"…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …"
-
13
Image3_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
منشور في 2021"…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …"
-
14
Image2_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
منشور في 2021"…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …"
-
15
DataSheet1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.pdf
منشور في 2021"…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …"