بدائل البحث:
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
basic process » based process (توسيع البحث), basic protein (توسيع البحث)
primary role » primary care (توسيع البحث), primary goal (توسيع البحث)
binary basic » binary mask (توسيع البحث)
role model » role models (توسيع البحث), one model (توسيع البحث), rate model (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
basic process » based process (توسيع البحث), basic protein (توسيع البحث)
primary role » primary care (توسيع البحث), primary goal (توسيع البحث)
binary basic » binary mask (توسيع البحث)
role model » role models (توسيع البحث), one model (توسيع البحث), rate model (توسيع البحث)
-
21
Internal architecture of the SPAM-XAI model.
منشور في 2024"…The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
22
SPAM-XAI compared with previous models.
منشور في 2024"…The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
23
Overview of SPAM-XAI model complete architecture.
منشور في 2024"…The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
24
DEM error verified by airborne data.
منشور في 2024"…<div><p>The accuracy of digital elevation models (DEMs) in forested areas plays a crucial role in canopy height monitoring and ecological sensitivity analysis. …"
-
25
Error of ICESat-2 with respect to airborne data.
منشور في 2024"…<div><p>The accuracy of digital elevation models (DEMs) in forested areas plays a crucial role in canopy height monitoring and ecological sensitivity analysis. …"
-
26
Data used in this study.
منشور في 2024"…<div><p>The accuracy of digital elevation models (DEMs) in forested areas plays a crucial role in canopy height monitoring and ecological sensitivity analysis. …"
-
27
Transect in parts of California.
منشور في 2024"…<div><p>The accuracy of digital elevation models (DEMs) in forested areas plays a crucial role in canopy height monitoring and ecological sensitivity analysis. …"
-
28
-
29
-
30
SPAM-XAI confusion matrix.
منشور في 2024"…The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
31
Illustration of MLP.
منشور في 2024"…The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
32
Dataset detail division.
منشور في 2024"…The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
33
Software defects types.
منشور في 2024"…The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
34
SMOTE representation.
منشور في 2024"…The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
35
Demonstration confusion matrix.
منشور في 2024"…The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
36
Analysis PC2 AU-ROC curve.
منشور في 2024"…The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
37
PROMISE defects prediction attribute aspects.
منشور في 2024"…The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
38
SPAM-XAI confusion matrix using PC2 dataset.
منشور في 2024"…The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
39
SPAM-XAI using the PC1 dataset.
منشور في 2024"…The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"
-
40
SPAM-XAI using the CM1 dataset.
منشور في 2024"…The SPAM-XAI model reduces features, optimizes the model, and reduces time and space complexity, enhancing its robustness. …"