بدائل البحث:
estimation algorithm » optimization algorithms (توسيع البحث), maximization algorithm (توسيع البحث), detection algorithm (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
primary sampling » primary amine (توسيع البحث)
binary b » binary _ (توسيع البحث)
b pose » _ pose (توسيع البحث), b pore (توسيع البحث), b poster (توسيع البحث)
estimation algorithm » optimization algorithms (توسيع البحث), maximization algorithm (توسيع البحث), detection algorithm (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
primary sampling » primary amine (توسيع البحث)
binary b » binary _ (توسيع البحث)
b pose » _ pose (توسيع البحث), b pore (توسيع البحث), b poster (توسيع البحث)
-
1
-
2
-
3
Big Data Model Building Using Dimension Reduction and Sample Selection
منشور في 2023"…Recently, several procedures have been proposed to select “optimal design points” as training subdata under pre-specified models, such as linear regression and logistic regression. …"
-
4
-
5
-
6
Data Sheet 1_Artificial intelligence-assisted capsule endoscopy for detecting lesions in Crohn’s disease: a systematic review and meta-analysis.docx
منشور في 2025"…Meta-regression analysis further revealed that AI algorithm type, study population size, and study design might be key sources of heterogeneity.…"
-
7
GridScopeRodents: High-Resolution Global Typical Rodents Distribution Projections from 2021 to 2100 under Diverse SSP-RCP Scenarios
منشور في 2025"…Using occurrence data and environmental variable, we employ the Maximum Entropy (MaxEnt) algorithm within the species distribution modeling (SDM) framework to estimate occurrence probability at a spatial resolution of 1/12° (~10 km). …"
-
8
An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows
منشور في 2025"…Experimental Methodology Framework Local Processing Pipeline Architecture Data Flow: Storage I/O → Memory Buffer → CPU/GPU Processing → Cache Coherency → Storage I/O ├── Input Vector: mmap() system call for zero-copy file access ├── Processing Engine: OpenMP parallelization with NUMA-aware thread affinity ├── Memory Management: Custom allocator with hugepage backing └── Output Vector: Direct I/O bypassing kernel page cache Cloud Processing Pipeline Architecture Data Flow: Local Storage → Network Stack → TLS Tunnel → CDN Edge → Origin Server → Processing Grid → Response Pipeline ├── Upload Phase: TCP window scaling with congestion control algorithms ├── Network Layer: Application-layer protocol with adaptive bitrate streaming ├── Server-side Processing: Containerized microservices on Kubernetes orchestration ├── Load Balancing: Consistent hashing with geographic affinity routing └── Download Phase: HTTP/2 multiplexing with server push optimization Dataset Schema and Semantic Structure Primary Data Vectors Field Data Type Semantic Meaning Measurement Unit test_type Categorical Processing paradigm identifier {local_processing, cloud_processing} photo_count Integer Cardinality of input asset vector Count avg_file_size_mb Float64 Mean per-asset storage footprint Mebibytes (2^20 bytes) total_volume_gb Float64 Aggregate data corpus size Gigabytes (10^9 bytes) processing_time_sec Integer Wall-clock execution duration Seconds (SI base unit) cpu_usage_watts Float64 Thermal design power consumption Watts (Joules/second) ram_usage_mb Integer Peak resident set size Mebibytes network_upload_mb Float64 Egress bandwidth utilization Mebibytes energy_consumption_kwh Float64 Cumulative energy expenditure Kilowatt-hours co2_equivalent_g Float64 Carbon footprint estimation Grams CO₂e test_date ISO8601 Temporal execution marker RFC 3339 format hardware_config String Node topology identifier Alphanumeric encoding Statistical Distribution Characteristics The dataset exhibits non-parametric distribution patterns with significant heteroscedasticity across computational load vectors. …"
-
9
PGAE-ICA_A simplified digital system for intellectual measurement-assessment in children and adolescents using cognitive testing and machine learning techniques
منشور في 2024"…A genetic algorithm-optimized extreme learning machine model was then constructed and trained to predict intellectual status of children and adolescents. …"