يعرض 81 - 100 نتائج من 1,261 نتيجة بحث عن '(( problem using python ) OR ( ((programmeeed OR programs) OR program) using python ))*', وقت الاستعلام: 0.33s تنقيح النتائج
  1. 81
  2. 82
  3. 83

    ADT: A Generalized Algorithm and Program for Beyond Born–Oppenheimer Equations of “<i>N</i>” Dimensional Sub-Hilbert Space حسب Koushik Naskar (7510592)

    منشور في 2020
    "…In order to establish the workability of our program package, we selectively choose six realistic molecular species, namely, NO<sub>2</sub> radical, H<sub>3</sub><sup>+</sup>, F + H<sub>2</sub>, NO<sub>3</sub> radical, C<sub>6</sub>H<sub>6</sub><sup>+</sup> radical cation, and 1,3,5-C<sub>6</sub>H<sub>3</sub>F<sub>3</sub><sup>+</sup> radical cation, where two, three, five and six electronic states exhibit profound nonadiabatic interactions and are employed to compute diabatic PESs by using <i>ab initio</i> calculated adiabatic PESs and NACTs. …"
  4. 84
  5. 85
  6. 86

    Data_Sheet_1_THINGSvision: A Python Toolbox for Streamlining the Extraction of Activations From Deep Neural Networks.pdf حسب Lukas Muttenthaler (11466658)

    منشور في 2021
    "…THINGSvision is a new Python module that aims at closing this gap by providing a simple and unified tool for extracting layer activations for a wide range of pretrained and randomly-initialized neural network architectures, even for users with little to no programming experience. …"
  7. 87
  8. 88
  9. 89

    On the Applicability of Language Models to Block-Based Programs حسب Lisa Griebl (12259895)

    منشور في 2023
    "…A separate README within the archive explains how the program can be run. Last, it contains the transformer_results as used for RQ3.…"
  10. 90

    Practical rules for summing the series of the Tweedie probability density function with high-precision arithmetic حسب NELSON L. DIAS (8078003)

    منشور في 2019
    "…These implementations need to utilize high-precision arithmetic, and are programmed in the Python programming language. A thorough comparison with existing R functions allows the identification of cases when the latter fail, and provide further guidance to their use.…"
  11. 91
  12. 92
  13. 93
  14. 94
  15. 95
  16. 96
  17. 97
  18. 98
  19. 99
  20. 100