Search alternatives:
code implementation » model implementation (Expand Search), world implementation (Expand Search), _ implementation (Expand Search)
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
tool implementation » world implementation (Expand Search), model implementation (Expand Search), proof implementation (Expand Search)
code implementation » model implementation (Expand Search), world implementation (Expand Search), _ implementation (Expand Search)
time implementation » _ implementation (Expand Search), policy implementation (Expand Search), effective implementation (Expand Search)
tool implementation » world implementation (Expand Search), model implementation (Expand Search), proof implementation (Expand Search)
-
181
Computational performance analysis script.
Published 2025“…<p>Python implementation for computational performance evaluation and timing analysis.…”
-
182
Single Cell DNA methylation data for Human Brain altas (MajorType+Region CG allc files)
Published 2025“…</p><p dir="ltr">PMID: 37824674</p><p><br></p><h2>How to download</h2><p dir="ltr">To quickly download the whole folder, Python package <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">pyfigshare</a> can be implemented. please refer to pyfigshare documentation: <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">https://github.com/DingWB/pyfigshare</a></p><p dir="ltr">for example: <code>figshare download 28424780 -o downlnoaded_data</code></p>…”
-
183
IGD-cyberbullying-detection-AI
Published 2024“…</p><h2>Requirements</h2><p dir="ltr">To run this code, you'll need the following dependencies:</p><ul><li>Python 3.x</li><li>TensorFlow</li><li>scikit-learn</li><li>pandas</li><li>numpy</li><li>matplotlib</li><li>imbalanced-learn</li></ul><p dir="ltr">You can install the required dependencies using the provided <code>requirements.txt</code> file.…”
-
184
Overview of generalized weighted averages.
Published 2025“…GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at <a href="https://github.com/manome/python-mab" target="_blank">https://github.com/manome/python-mab</a>.…”
-
185
Automatic data reduction for the typical astronomer
Published 2025“…PypeIt has been developed by a small team of astronomers with two leading philosophies: (1) build instrument-agnostic code to serve nearly any spectrograph; (2) implement algorithms that achieve Poisson-level sky-subtraction with minimal systematics to yield precisely calibrated spectra with a meaningful noise model. …”
-
186
Concurrent spin squeezing and field tracking with machine learning
Published 2025“…Randomly signal generating codeb.Deep learning codec.data pre-processing code The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
-
187
Landscape Change Monitoring System (LCMS) Conterminous United States Cause of Change (Image Service)
Published 2025“…Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. …”
-
188
Table 3_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…</p>Conclusions<p>This study demonstrates that integrating deep learning with multi-sequence breast MRI and clinical data provides a highly effective and reliable tool for predicting HER2 expression in breast cancer. …”
-
189
Table 2_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…</p>Conclusions<p>This study demonstrates that integrating deep learning with multi-sequence breast MRI and clinical data provides a highly effective and reliable tool for predicting HER2 expression in breast cancer. …”
-
190
Table 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…</p>Conclusions<p>This study demonstrates that integrating deep learning with multi-sequence breast MRI and clinical data provides a highly effective and reliable tool for predicting HER2 expression in breast cancer. …”
-
191
Data Sheet 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…</p>Conclusions<p>This study demonstrates that integrating deep learning with multi-sequence breast MRI and clinical data provides a highly effective and reliable tool for predicting HER2 expression in breast cancer. …”
-
192
Gene Editing using Transformer Architecture
Published 2025“…., the H-Bot sequence), it facilitates on-screen gene editing, enabling targeted mutations or the insertion of desired genes. Implementation requires Python and deep learning frameworks like TensorFlow or PyTorch, with optional use of Biopython for genetic sequence handling. …”
-
193
Supervised Classification of Burned Areas Using Spectral Reflectance and Machine Learning
Published 2025“…Six Python scripts are provided, each implementing a distinct machine learning algorithm—Random Forest, k-Nearest Neighbors (k-NN), Multi-Layer Perceptron (MLP), Decision Tree, Naïve Bayes, and Logistic Regression. …”
-
194
Data from: Circadian activity predicts breeding phenology in the Asian burying beetle <i>Nicrophorus nepalensis</i>
Published 2025“…</p><p dir="ltr">The dataset includes:</p><ol><li>Raw locomotor activity measurements (.txt files) with 1-minute resolution</li><li>Breeding experiment data (Pair_breeding.csv) documenting nest IDs, population sources, photoperiod treatments, and breeding success</li><li>Activity measurement metadata (Loc_metadataset.csv) containing detailed experimental parameters and daily activity metrics extracted using tsfresh</li></ol><p dir="ltr">The repository also includes complete analysis pipelines implemented in both Python (3.8.8) and R (4.3.1), featuring:</p><ul><li>Data preprocessing and machine learning model development</li><li>Statistical analyses</li><li>Visualization scripts for generating Shapley plots, activity pattern plots, and other figures</li></ul><p></p>…”
-
195
Supplementary Data: Biodiversity and Energy System Planning - Queensland 2025
Published 2025“…</p><h2>Software and Spatial Resolution</h2><p dir="ltr">The VRE siting model is implemented using Python and relies heavily on ArcGIS for comprehensive spatial data handling and analysis.…”
-
196
PTPC v1.0 Numerical Baseline: Stable Multi-Bounce Cosmology Simulation
Published 2025“…The included Python scripts simulate a low-RAM cosmological oscillator that evolves through successive nonsingular “bounces,” demonstrating a self-consistent cyclic universe in which curvature, tension, and entropy reset in finite, periodic intervals. …”
-
197
Dataset for: Phylotranscriptomics reveals the phylogeny of Asparagales and the evolution of allium flavor biosynthesis, Nature Communications,DOI:10.1038/s41467-024-53943-6
Published 2024“…Specifically, run this *.xml file using BEAST six times. Then, output of the six runs was combined and TreeAnnotator was used to summarize divergence time.…”
-
198
CNG-ARCO-RADAR.pdf
Published 2025“…This approach uses a suite of Python libraries, including Xarray (Xarray-Datatree), Xradar, and Zarr, to implement a hierarchical tree-like data model. …”
-
199
Hippocampal and cortical activity reflect early hyperexcitability in an Alzheimer's mouse model
Published 2025“…</p><p dir="ltr">All data are available upon request. The standalone Python implementation of the fE/I algorithm is available under a CC-BY-NC-SA license at <a href="https://github.com/arthur-ervin/crosci" target="_blank">https://github.com/arthur-ervin/crosci</a>. …”
-
200
Reinforcement Learning based traffic steering inOpen Radio Access Network (ORAN)- oran-ts GitHub Repository
Published 2025“…It features a modular Python framework implementing various RL agents (Q-Learning, SARSA, N-Step SARSA, DQN) and a traditional baseline evaluated in a realistic cellular network environment. …”