بدائل البحث:
code implementation » model implementation (توسيع البحث), world implementation (توسيع البحث), _ implementation (توسيع البحث)
time implementation » _ implementation (توسيع البحث), policy implementation (توسيع البحث), effective implementation (توسيع البحث)
tool implementing » model implementing (توسيع البحث), trial implementing (توسيع البحث), from implementing (توسيع البحث)
code implementation » model implementation (توسيع البحث), world implementation (توسيع البحث), _ implementation (توسيع البحث)
time implementation » _ implementation (توسيع البحث), policy implementation (توسيع البحث), effective implementation (توسيع البحث)
tool implementing » model implementing (توسيع البحث), trial implementing (توسيع البحث), from implementing (توسيع البحث)
-
101
Convergence rate analysis.
منشور في 2025"…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …"
-
102
Computational efficiency.
منشور في 2025"…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …"
-
103
Analysis of IoMT data sources.
منشور في 2025"…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …"
-
104
Prediction accuracy on varying attack types.
منشور في 2025"…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …"
-
105
<b> </b> Precision analysis.
منشور في 2025"…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …"
-
106
Impact of cyberattack types on IoMT devices.
منشور في 2025"…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …"
-
107
DataSheet1_Prostruc: an open-source tool for 3D structure prediction using homology modeling.PDF
منشور في 2024"…</p>Methods<p>Prostruc is a Python-based homology modeling tool designed to simplify protein structure prediction through an intuitive, automated pipeline. …"
-
108
DataSheet1_Prostruc: an open-source tool for 3D structure prediction using homology modeling.PDF
منشور في 2024"…</p>Methods<p>Prostruc is a Python-based homology modeling tool designed to simplify protein structure prediction through an intuitive, automated pipeline. …"
-
109
Code for High-quality Human Activity Intensity Maps in China from 2000-2020
منشور في 2025"…<p dir="ltr">Code and remote sensing images and interpretation results of the samples for uncertainty analysis for "High-quality Human Activity Intensity Maps in China from 2000-2020"</p><p dir="ltr">“Mapping_HAI.py”:We generated the HAI maps using ArcGIS 10.8, and the geoprocessing tasks were implemented using Python 2.7 with the ArcPy library (ArcGIS 10.8 + Python 2.7 environment). …"
-
110
-
111
The codes and data for "Lane Extraction from Trajectories at Road Intersections Based on Graph Transformer Network"
منشور في 2024"…Each lane includes 'geometry' and 'inter_id' attributes.</li></ul><h2>Codes</h2><p dir="ltr">This repository contains the following Python codes:</p><ul><li>`data_processing.py`: Contains the implementation of data processing and feature extraction. …"
-
112
MATH_code : False Data Injection Attack Detection in Smart Grids based on Reservoir Computing
منشور في 2025"…</li><li><b>3_literature_analysis_and_mapping.ipynb</b><br>Contains the Python code used for executing the systematic mapping study (SMS), including automated processing of literature data and thematic clustering.…"
-
113
Monte Carlo Simulation Code for Evaluating Cognitive Biases in Penalty Shootouts Using ABAB and ABBA Formats
منشور في 2024"…<p dir="ltr">This Python code implements a Monte Carlo simulation to evaluate the impact of cognitive biases on penalty shootouts under two formats: ABAB (alternating shots) and ABBA (similar to tennis tiebreak format). …"
-
114
Evaluation and Statistical Analysis Code for "Multi-Task Learning for Joint Fisheye Compression and Perception for Autonomous Driving"
منشور في 2025"…</li></ul><p dir="ltr">These scripts are implemented in Python using the PyTorch framework and are provided to ensure the reproducibility of the experimental results presented in the manuscript.…"
-
115
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
منشور في 2025"…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…"
-
116
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
منشور في 2025"…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…"
-
117
-
118
Workflow of a typical Epydemix run.
منشور في 2025"…<div><p>We present Epydemix, an open-source Python package for the development and calibration of stochastic compartmental epidemic models. …"
-
119
<b>Code and derived data for</b><b>Training Sample Location Matters: Accuracy Impacts in LULC Classification</b>
منشور في 2025"…</li><li>Python/Kaggle notebooks (<code>.ipynb</code>): reproducibility pipeline for accuracy metrics and statistical analysis.…"
-
120
<b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b>
منشور في 2025"…<p dir="ltr"><b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b></p><p dir="ltr">The code was developed in the Google Collaboratory environment, using Python version 3.7.13, with TensorFlow 2.8.2. …"