يعرض 101 - 120 نتائج من 213 نتيجة بحث عن '(( python ((code implementation) OR (time implementation)) ) OR ( python tool implementing ))', وقت الاستعلام: 0.45s تنقيح النتائج
  1. 101

    Convergence rate analysis. حسب Mohanad Faeq Ali (21354273)

    منشور في 2025
    "…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …"
  2. 102

    Computational efficiency. حسب Mohanad Faeq Ali (21354273)

    منشور في 2025
    "…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …"
  3. 103

    Analysis of IoMT data sources. حسب Mohanad Faeq Ali (21354273)

    منشور في 2025
    "…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …"
  4. 104

    Prediction accuracy on varying attack types. حسب Mohanad Faeq Ali (21354273)

    منشور في 2025
    "…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …"
  5. 105

    <b> </b> Precision analysis. حسب Mohanad Faeq Ali (21354273)

    منشور في 2025
    "…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …"
  6. 106

    Impact of cyberattack types on IoMT devices. حسب Mohanad Faeq Ali (21354273)

    منشور في 2025
    "…The recurrent networks, specifically Long Short Term Memory (LSTM), process data from healthcare devices, identifying abnormal patterns that indicate potential cyberattacks over time. The created system was implemented using Python, and various metrics, including false positive and false negative rates, accuracy, precision, recall, and computational efficiency, were used for evaluation. …"
  7. 107

    DataSheet1_Prostruc: an open-source tool for 3D structure prediction using homology modeling.PDF حسب Shivani V. Pawar (20355171)

    منشور في 2024
    "…</p>Methods<p>Prostruc is a Python-based homology modeling tool designed to simplify protein structure prediction through an intuitive, automated pipeline. …"
  8. 108

    DataSheet1_Prostruc: an open-source tool for 3D structure prediction using homology modeling.PDF حسب Shivani V. Pawar (20355171)

    منشور في 2024
    "…</p>Methods<p>Prostruc is a Python-based homology modeling tool designed to simplify protein structure prediction through an intuitive, automated pipeline. …"
  9. 109

    Code for High-quality Human Activity Intensity Maps in China from 2000-2020 حسب Wenqi Xie (18273238)

    منشور في 2025
    "…<p dir="ltr">Code and remote sensing images and interpretation results of the samples for uncertainty analysis for "High-quality Human Activity Intensity Maps in China from 2000-2020"</p><p dir="ltr">“Mapping_HAI.py”:We generated the HAI maps using ArcGIS 10.8, and the geoprocessing tasks were implemented using Python 2.7 with the ArcPy library (ArcGIS 10.8 + Python 2.7 environment). …"
  10. 110
  11. 111

    The codes and data for "Lane Extraction from Trajectories at Road Intersections Based on Graph Transformer Network" حسب Chongshan Wan (19247614)

    منشور في 2024
    "…Each lane includes 'geometry' and 'inter_id' attributes.</li></ul><h2>Codes</h2><p dir="ltr">This repository contains the following Python codes:</p><ul><li>`data_processing.py`: Contains the implementation of data processing and feature extraction. …"
  12. 112

    MATH_code : False Data Injection Attack Detection in Smart Grids based on Reservoir Computing حسب Carl-Hendrik Peters (21530624)

    منشور في 2025
    "…</li><li><b>3_literature_analysis_and_mapping.ipynb</b><br>Contains the Python code used for executing the systematic mapping study (SMS), including automated processing of literature data and thematic clustering.…"
  13. 113

    Monte Carlo Simulation Code for Evaluating Cognitive Biases in Penalty Shootouts Using ABAB and ABBA Formats حسب Raul MATSUSHITA (10276562)

    منشور في 2024
    "…<p dir="ltr">This Python code implements a Monte Carlo simulation to evaluate the impact of cognitive biases on penalty shootouts under two formats: ABAB (alternating shots) and ABBA (similar to tennis tiebreak format). …"
  14. 114

    Evaluation and Statistical Analysis Code for "Multi-Task Learning for Joint Fisheye Compression and Perception for Autonomous Driving" حسب Basem Ahmed (18127861)

    منشور في 2025
    "…</li></ul><p dir="ltr">These scripts are implemented in Python using the PyTorch framework and are provided to ensure the reproducibility of the experimental results presented in the manuscript.…"
  15. 115

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" حسب FirstName LastName (20554465)

    منشور في 2025
    "…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…"
  16. 116

    The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation" حسب FirstName LastName (20554465)

    منشور في 2025
    "…The <b>innovations</b> and <b>steps</b> in Case 3, including data download, sample generation, and parallel computation optimization, were independently developed and are not dependent on the GeoCube’s code.</p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.8</p><ul><li>torch==2.0.0</li><li>torch_geometric==2.5.3</li><li>networkx==2.6.3</li><li>pyshp==2.3.1</li><li>tensorrt==8.6.1</li><li>matplotlib==3.7.2</li><li>scipy==1.10.1</li><li>scikit-learn==1.3.0</li><li>geopandas==0.13.2</li></ul><p><br></p>…"
  17. 117
  18. 118

    Workflow of a typical Epydemix run. حسب Nicolò Gozzi (8837522)

    منشور في 2025
    "…<div><p>We present Epydemix, an open-source Python package for the development and calibration of stochastic compartmental epidemic models. …"
  19. 119

    <b>Code and derived data for</b><b>Training Sample Location Matters: Accuracy Impacts in LULC Classification</b> حسب Pajtim Zariqi (22155799)

    منشور في 2025
    "…</li><li>Python/Kaggle notebooks (<code>.ipynb</code>): reproducibility pipeline for accuracy metrics and statistical analysis.…"
  20. 120

    <b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b> حسب Marly G F Costa (19812192)

    منشور في 2025
    "…<p dir="ltr"><b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b></p><p dir="ltr">The code was developed in the Google Collaboratory environment, using Python version 3.7.13, with TensorFlow 2.8.2. …"