Showing 121 - 140 results of 217 for search '(( python ((code implementation) OR (world implementation)) ) OR ( python code represent ))', query time: 0.58s Refine Results
  1. 121

    Comparison data 3 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  2. 122

    Sample data for <i>Telmatochromis temporalis</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  3. 123

    Comparison data 4 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  4. 124

    Comparison data 1 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  5. 125

    Comparison data 2 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  6. 126

    Comparison data 5 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  7. 127

    Comparison data 6 for <i>Lamprologus ocellatus</i>. by Nicolai Kraus (19949667)

    Published 2024
    “…TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. …”
  8. 128
  9. 129

    Missing Value Imputation in Relational Data Using Variational Inference by Simon Fontaine (7046618)

    Published 2025
    “…Additional results, implementation details, a Python implementation, and the code reproducing the results are available online. …”
  10. 130

    Global Aridity Index and Potential Evapotranspiration (ET0) Database: Version 3.1 by Robert Zomer (12796235)

    Published 2025
    “…</p><p dir="ltr">The Python programming source code used to run the calculation of ET0 and AI is provided and available online on Figshare at:</p><p dir="ltr">https://figshare.com/articles/software/Global_Aridity_Index_and_Potential_Evapotranspiration_Climate_Database_v3_-_Algorithm_Code_Python_/20005589</p><p dir="ltr">Peer-Review Reference and Proper Citation:</p><p dir="ltr">Zomer, R.J.; Xu, J.; Trabuco, A. 2022. …”
  11. 131

    Genomic Surveillance of Pemivibart (VYD2311) Escape-Associated Mutations in SARS-CoV-2: December 2025 BioSamples (n=2) by Tahir Bhatti (20961974)

    Published 2025
    “…The samples (SRR36268464, SRR36225071) were retrieved from the NCBI Sequence Read Archive (SRA) and represent publicly available, real-world viral specimens collected during the final month of 2025, <b>the most recent temporal window available at the time of analysis.…”
  12. 132

    Overview of generalized weighted averages. by Nobuhito Manome (8882084)

    Published 2025
    “…GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at <a href="https://github.com/manome/python-mab" target="_blank">https://github.com/manome/python-mab</a>.…”
  13. 133

    Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx by Piyachat Udomwong (22563212)

    Published 2025
    “…Its efficiency and scalability make it well-suited for early-stage antibody discovery, repertoire profiling, and therapeutic design, particularly in the absence of structural data. The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…”
  14. 134

    Artifact for the IJCAI 2024 paper "Solving Long-run Average Reward Robust MDPs via Stochastic Games" by Krishnendu Chatterjee (15367413)

    Published 2024
    “…<br></pre></pre><h2>Structure and How to run</h2><p dir="ltr">There are four Python files in the repository.</p><pre><pre>(i) `StrategyIteration.py` is the backend code, containing the implementation of the RPPI algorithm described in the paper.…”
  15. 135

    MCCN Case Study 3 - Select optimal survey locality by Donald Hobern (21435904)

    Published 2025
    “…</p><p dir="ltr">This is a simple implementation that uses four environmental attributes imported for all Australia (or a subset like NSW) at a moderate grid scale:</p><ol><li>Digital soil maps for key soil properties over New South Wales, version 2.0 - SEED - see <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html" target="_blank">https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html</a></li><li>ANUCLIM Annual Mean Rainfall raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer</a></li><li>ANUCLIM Annual Mean Temperature raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer</a></li></ol><h4><b>Dependencies</b></h4><ul><li>This notebook requires Python 3.10 or higher</li><li>Install relevant Python libraries with: <b>pip install mccn-engine rocrate</b></li><li>Installing mccn-engine will install other dependencies</li></ul><h4><b>Overview</b></h4><ol><li>Generate STAC metadata for layers from predefined configuratiion</li><li>Load data cube and exclude nodata values</li><li>Scale all variables to a 0.0-1.0 range</li><li>Select four layers for comparison (soil organic carbon 0-30 cm, soil pH 0-30 cm, mean annual rainfall, mean annual temperature)</li><li>Select 10 random points within NSW</li><li>Generate 10 new layers representing standardised environmental distance between one of the selected points and all other points in NSW</li><li>For every point in NSW, find the lowest environmental distance to any of the selected points</li><li>Select the point in NSW that has the highest value for the lowest environmental distance to any selected point - this is the most different point</li><li>Clean up and save results to RO-Crate</li></ol><p><br></p>…”
  16. 136

    Gene Editing using Transformer Architecture by Rishabh Garg (5261744)

    Published 2025
    “…., the H-Bot sequence), it facilitates on-screen gene editing, enabling targeted mutations or the insertion of desired genes. Implementation requires Python and deep learning frameworks like TensorFlow or PyTorch, with optional use of Biopython for genetic sequence handling. …”
  17. 137

    A Hybrid Ensemble-Based Parallel Learning Framework for Multi-Omics Data Integration and Cancer Subtype Classification by Mohammed Nasser Al-Andoli (21431681)

    Published 2025
    “…<p dir="ltr">The code supports replication of results on TCGA Pan-cancer and BRCA datasets and includes data preprocessing, model training, and evaluation scripts:<br>Python scripts for data preprocessing and integration</p><ul><li>Autoencoder implementation for multimodal feature learning</li><li>Hybrid ensemble training code (DL/ML models and meta-learner)</li><li>PSO and backpropagation hybrid optimization code</li><li>Parallel execution scripts</li><li>Instructions for replicating results on TCGA Pan-cancer and BRCA datasets</li></ul><p></p>…”
  18. 138

    <b>Algorithm Pseudocode</b> by Yibin Zhao (22425801)

    Published 2025
    “…The model generates point forecasts and forecast interval boundaries for short-term loads, providing important support for risk quantification and decision-making in power systems. The pseudo-code follows standard Python syntax specifications for functions and loops and is easy to understand and implement. …”
  19. 139

    <b>Anonymous, runnable artifact for </b><b>Testing AI Applications Under Nondeterminism, Drift, and Resource Constraints: A Problem‑Driven Multi‑Layer Approach</b> by Nariman Mani (21380459)

    Published 2025
    “…</b> The anonymized archive includes a dependency‑free Python implementation of all five layers (oracle, coverage, drift mapping, prioritization, resource scheduling), an orchestrator, and synthetic datasets with 50 test cases per sub‑application (LLM assistant, retrieval with citation, vision calories, notification/social). …”
  20. 140

    HCC Evaluation Dataset and Results by Jens-Rene Giesen (18461928)

    Published 2024
    “…The only requirement for running this script is a Python 3.6+ interpreter as well as an installation of the <code>numpy</code> package. …”